Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Internaional conference «Modern Mathematical Physics. Vladimirov-95»
November 16, 2018 12:35–13:05, Moscow, Steklov Mathematical Institite, 8, Gubkina str., Conference hall
 


Application of p-adic analysis methods in describing Markov processes on ultrametric spaces isometrically embeddable into $\mathbb{Q}_{p}$

A. Kh. Bikulov
Video records:
MP4 405.7 Mb
MP4 184.3 Mb

Number of views:
This page:165
Video files:42

A. Kh. Bikulov



Abstract: We propose a method for describing stationary Markov processes on the class of ultrametric spaces $\mathbb{U}$ isometrically embeddable in the field $\mathbb{Q}_{p}$ of $p$-adic numbers. This method is capable of reducing the study of such processes to the investigation of processes on $\mathbb{Q}_{p}$. Thereby the traditional machinery of $p$-adic mathematical physics can be applied to calculate the characteristics of stationary Markov processes on such spaces. The Cauchy problem for the Kolmogorov–Feller equation of a stationary Markov process on such spaces is shown as being reducible to the Cauchy problem for a pseudo-differential equation on $\mathbb{Q}_{p}$ with non-translation-invariant measure $m\left(x\right)d_{p}x$. The spectrum of the pseudo-differential operator of the Kolmogorov–Feller equation on $\mathbb{Q}_{p}$ with measure $m\left(x\right)d_{p}x$ is found. An orthonormal basis for $L^{2}\left(\mathbb{Q}_{p}, m\left(x\right)d_{p}x\right)$ is constructed from the eigenfunctions of this operator.

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024