Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Conference to the Memory of Anatoly Alekseevitch Karatsuba on Number theory and Applications
January 28, 2016 10:35–10:50, Dorodnitsyn Computing Centre, Department of Mechanics and Mathematics of Lomonosov Moscow State University., 119991, Moscow, Gubkina str., 8, Steklov Mathematical Institute, 9 floor, Conference hall
 


On the zeroes of the function of Davenport and Heilbronn lying on the critical line

S. A. Gritsenkoabc

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Financial University under the Government of the Russian Federation, Moscow
c Bauman Moscow State Technical University
Video records:
Flash Video 169.6 Mb
Flash Video 1,010.5 Mb
MP4 650.7 Mb

Number of views:
This page:328
Video files:108

S. A. Gritsenko



Abstract: Let $\chi_1(n)$ be the character of Dirichlet $\mod 5$ such that $\chi_1(2)=i$,
$$ \varkappa\,=\,\frac{\sqrt{10-2\sqrt{5}}-2}{\sqrt{5}-1}. $$
Davenport–Heilbronn function is defined as follows:
$$ f(s)\,=\,\frac{1-i\varkappa}{2}L(s,\chi_1)\,+\,\frac{1+i\varkappa}{2}L(s,\overline{\chi}_1). $$
The function $f(s)$ was introduced and investigated by Davenport and Heilbronn in 1936. It satisfies the functional equation $g(s)=g(1-s)$ of Riemann's type where
$$ g(s)\,=\,\biggl(\frac{\pi}{5}\biggr)^{\!-\,s/2}\Gamma\biggl(\frac{1+s}{2}\biggr)f(s). $$


However, it is well -known however, that not all non -trivial zeros of $f(s)$ lie on the line $\Re s=\frac{1}{2}$.

In the region $\Re s>1$, $0<\Im s\le T$, the number of zeros of $f(s)$ exceeds $cT$, where $c>0$ is an absolute constant (Davenport and Heilbronn, 1936).

Moreover, the number of zeros of $f(s)$ in the region $\tfrac{1}{2}<\sigma_1<\Re s<\sigma_2$, $0<\Im s\le T$ exceeds $c_{1}T$, where $c_{1}>0$ is an absolute constant (S.M. Voronin, 1976).

In 1980, Voronin proved that “abnormally many” zeros of $f(s)$ lie on the critical line $\Re s=\tfrac{1}{2}$. Let $N_{0}(T)$ be the number of zeros of $f(s)$ on the segment $\Re s=\tfrac{1}{2}$, $0<\Im s\le T$. Then Voronin got the estimate
$$ N_{0}(T)\,>\,c_{2}T\exp\bigl(\tfrac{1}{20}\sqrt{\log\log\log\log T}\bigr), $$
where $c_{2}>0$ is an absolute constant.

In 1990, A.A. Karatsuba improved Voronin's estimate significantly and got the inequality
$$ N_{0}(T)\,>\,T(\log T)^{1/2-\varepsilon}, $$
where $\varepsilon>0$ is an arbitrary small constant, $T>T_{0}(\varepsilon)>0$.

In 1994, A.A. Karatsuba got somewhat more precise estimate
$$ N_{0}(T)\,>\,T(\log T)^{1/2}\exp{\bigl(-c_{3}\sqrt{\log\log T}\bigr)}, $$
where $c_{3}>0$ is an absolute constant.

In this talk, we represent the the following theorem proved by the author.

Theorem. Let $\varepsilon>0$ be an arbitrary small constant. Then the estimate
$$ N_{0}(T)\,>\,T(\log T)^{1/2+1/16-\varepsilon}. $$
holds.

Language: Russian and English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024