|
|
International conference on Function Spaces and Approximation Theory dedicated to the 110th anniversary of S. M. Nikol'skii
May 28, 2015 17:30–17:55, Дифференциальные уравнения, Moscow, Steklov Mathematical Institute of RAS
|
|
|
|
|
|
The symmetry of a spectrum of nuclear operators in subspaces of $L_p$-spaces
O. I. Reinov Saint Petersburg State University
|
Number of views: |
This page: | 158 | Materials: | 41 |
|
Abstract:
It was proved in the paper [1] that the spectrum of a nuclear operator $A$ acting on a separable Hilbert space is central-symmetric if and only if $\operatorname{trace}A^{2n - 1} = 0$, $n \in \mathbb N$.
We prove:
Theorem.
Let $Y$ be a subspace of a quotient (or a quotient of a subspace)
of an $L_p$-space, $1\le p\le\infty$
and $T\in N_s(Y,Y)$ ($s$-nuclear), where $1/s=1+|1/2-1/p|$.
The spectrum of $T$ is central-symmetric if and only if $\operatorname{trace}A^{2n - 1} = 0$, $n =1,2,\dots$ .
Remark.
$T$ is $s$-nuclear, if $T$ admits a representation
$$
T=\sum_i \lambda_i y'_i\otimes y_i,
$$
where $(\lambda_i)\in l_s,$ $(y'_i)$ and $(y_i)$ are bounded.
Supplementary materials:
abstract.pdf (96.0 Kb)
Language: English
References
-
M. I. Zelikin, “A criterion for the symmetry of a spectrum”, Dokl. Akad. Nauk, 418:6 (2008), 737–740
|
|