Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






International conference on Function Spaces and Approximation Theory dedicated to the 110th anniversary of S. M. Nikol'skii
May 28, 2015 17:30–17:55, Дифференциальные уравнения, Moscow, Steklov Mathematical Institute of RAS
 


The symmetry of a spectrum of nuclear operators in subspaces of $L_p$-spaces

O. I. Reinov

Saint Petersburg State University
Supplementary materials:
Adobe PDF 96.0 Kb

Number of views:
This page:158
Materials:41

Abstract: It was proved in the paper [1] that the spectrum of a nuclear operator $A$ acting on a separable Hilbert space is central-symmetric if and only if $\operatorname{trace}A^{2n - 1} = 0$, $n \in \mathbb N$.
We prove:
Theorem. Let $Y$ be a subspace of a quotient (or a quotient of a subspace) of an $L_p$-space, $1\le p\le\infty$ and $T\in N_s(Y,Y)$ ($s$-nuclear), where $1/s=1+|1/2-1/p|$. The spectrum of $T$ is central-symmetric if and only if $\operatorname{trace}A^{2n - 1} = 0$, $n =1,2,\dots$ .
Remark. $T$ is $s$-nuclear, if $T$ admits a representation
$$ T=\sum_i \lambda_i y'_i\otimes y_i, $$
where $(\lambda_i)\in l_s,$ $(y'_i)$ and $(y_i)$ are bounded.

Supplementary materials: abstract.pdf (96.0 Kb)

Language: English

References
  1. M. I. Zelikin, “A criterion for the symmetry of a spectrum”, Dokl. Akad. Nauk, 418:6 (2008), 737–740  mathnet  mathscinet
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024