|
|
International conference on Function Spaces and Approximation Theory dedicated to the 110th anniversary of S. M. Nikol'skii
May 25, 2015 18:20–18:40, Функциональные пространства, Moscow, Steklov Mathematical Institute of RAS
|
|
|
|
|
|
Boas theorem for Lorentz spaces $\Lambda_q(\omega)$
A. N. Kopezhanova L. N. Gumilyov Eurasian National University
|
Number of views: |
This page: | 222 | Materials: | 44 |
|
Abstract:
Let $0<q\leq\infty$ and $\omega$ be a nonnegative function on $[0,1]$.
The generalized Lorentz spaces $ \Lambda_q(\omega)$ consists of the functions
$f$ on $[0,1]$ such that $\|f\|_{\Lambda_q(\omega)}<\infty$, where
$$
\|f\|_{\Lambda_q(\omega)}:=\begin{cases}
\displaystyle \biggl(\int_0^1(f^*(t)\omega(t))^q\frac{dt}{t}\biggr)^{\frac1q} & \text{for } 0<q<\infty,
\\[4mm]
\displaystyle \sup_{0\leq t\leq 1}f^*(t)\omega(t) & \text{for } q=\infty.
\end{cases}
$$
These spaces $\Lambda_q(\omega)$ coincide to the classical spaces $L_{pq}$
in the case $\omega(t)=t^{\frac1p},$ $1<p<\infty$ (see [N389:1]).
Let $\mu=\{\mu(k)\}_{k\in {\mathbb N}}$ be a sequence of positive number and the space $\lambda_q(\mu)$
consists of all sequences $a=\{a_k\}_{k=1}^\infty$ such that $\|a\|_{\lambda_q(\mu)}<\infty$, where
$$
\|a\|_{\lambda_q(\mu)}:=
\begin{cases}
\displaystyle
\biggl(\sum_{k=1}^\infty(a_k^*\mu(k))^q\frac1k\biggr)^{\frac1q} & \text{for } 0<q<\infty,
\\[4mm]
\displaystyle
\sup_{k}a_k^*\mu(k) &\text{for } q=\infty.
\end{cases}
$$
Here $\{a_k^*\}_{k=1}^\infty$ is the nonincreasing rearrangement of the sequence
$\{|a_k|\}_{k=1}^\infty$. Boas theorem was generalized also for more general Lorentz
spaces $\Lambda_q(\omega)$ in 1974 by L.-E. Persson for the case when $\Phi=\{e^{2\pi ikx}\}_{k=-\infty}^{+\infty}$
is the trigonometric system (see [N389:2]).
Let the function $f$ be periodic with period 1 and integrable on $[0,1]$
and let $\Phi=\{\varphi_k\}_{k=1}^\infty $ be an orthonormal system on $[0,1]$. The numbers
$$
a_k=a_k(f)=\int_0^1f(x)\overline{\varphi_k(x)}dx, \qquad k\in {\mathbb N}
$$
are called the Fourier coefficients of the functions $f$ with respect to the system $\Phi=\{\varphi_k\}_{k=1}^\infty$.
We say that the orthonormal system $\Phi=\{\varphi_k\}_{k=1}^\infty$ is regular if there exists a constant $B$, such that
- 1) for every segment $e$ from $[0,1]$ and $k\in{\mathbb N}$ it yields that
$$
\biggl|\int_e\varphi_k(x)dx\biggr|\leq B \min(|e |, 1/k),
$$
- 2) for every segment $w$ from ${\mathbb N}$ and $t\in (0,1]$ we have that
$$
\biggl(\sum_{k\in w}\varphi_k(\,\cdot\,)\biggr)^*(t)\leq B\min(|w |, 1/t),
$$
where $ \left(\sum_{k\in w}\varphi_k(\cdot)\right)^*(t)$ as usual denotes the nonincreasing
rerrangement of the function $\sum_{k\in w}\varphi_k(x)$.
Examples of regular systems are all trigonometric systems, the Walsh system and Price's system.
In [N389:3], [N389:4], [N389:5] some results were obtained with respect to the regular system using network space.
Let $\delta>0$ be a fixed parameter. Consider a nonnegative function $\omega(t)$ on $[0,1]$. We define the following classes:
$$
\begin{aligned}
A_{\delta}&:=\{\omega(t): \omega(t)t^{-\frac12-\delta} \text{ is an increasing function and }
\omega(t)t^{-1+\delta } \text{ is a decreasing function}\},
\\
B_{\delta}&:=\{\omega(t):
\omega(t)t^{-\delta} \text{ is an increasing function and }
\omega(t)t^{-1+\delta}\text{ is a decreasing function}\},
\end{aligned}
$$
Then the classes $A,$ $B$ can be defined as follows: $A=\bigcup_{\delta>0}A_{\delta}$, $B=\bigcup_{\delta>0}B_{\delta}$.
The main results of this work are the following generalizations of the Boas theorem.
\begin{etheorem}
Let $1\leq q\leq\infty$ and $\omega\in B.$ Let $\Phi=\{\varphi_k\}_{k=1}^\infty$ be
a regular system and let $f\stackrel{\text{a.e.}}{=}\sum_{k=1}^\infty a_k\varphi_k$.
If $f$ is a nonnegative and a nonincreasing function, then
$$
\biggl(\int_0^1 (f(t)\omega (t ) )^q\frac{dt}{t}\biggr)^{\frac1q}
\approx \biggl (\sum_{k=1}^\infty(a_k^*\mu(k))^q\frac1k\biggr)^{\frac1q},
$$
where $\mu(k)=k\omega(1/k)$.
\end{etheorem}
We say that a function $f$ on $[0,1]$ is generalized monotone if there exists some constant $M>0$ such that
$$
|f(x)|\leq M\frac{1}{x}\biggl|\int_{0}^xf(t)\,dt\biggr|,\qquad x>0.
$$
Our next main result reads.
Теорема.
Let $1\leq q\leq\infty$ and $\omega\in A$.
Let $\Phi=\{\varphi_k\}_{k=1}^\infty$ be a regular system and let $f\stackrel{\text{a.e.}}{=}\sum_{k=1}^\infty a_k\varphi_k$.
If $f$ is a nonnegative and a generalized monotone function, then
$$
\|f\|_{\Lambda_q(\omega, [0,1])}\approx \biggl(\sum_{k=1}^\infty(a_k^*\mu(k))^q\frac1k\biggr)^{\frac1q},
$$
where $\mu(k)=k\omega(1/k)$.
Supplementary materials:
abstract.pdf (176.7 Kb)
Language: English
References
-
J. Bergh, J. Löfström, Interpolation spaces. An Introduction, Springer Verlag, Berlin, 1976
-
L.-E. Persson, Relation between regularity of periodic functions and their Fourier series, Ph.D thesis, Dept. of Math., Umeå University, 1974
-
E. D. Nursultanov, “On the coefficients of multiple Fourier series from $L_p$-spaces”, Izv. Math., 64:1 (2000), 93–120
-
E. D. Nursultanov, “Net spaces and the Fourier transform”, Dokl. Akad. Nauk, 361:5 (1998), 597–599
-
E. D. Nursultanov, “Network spaces and inequalities of Hardy–Littlewood type”, Sb. Math., 189:3-4 (1998), 399–419
|
|