Abstract:
Let $p(\,\cdot\,)$ be a continuous function on $I_0=[0,1]$ with values in $[1,\infty)$. We suppose that
\begin{equation}
\label{N352:gag21}
1\le p_{-} \leq p(x)\leq p_{+}<\infty,
\end{equation}
where $p_{-}:=\operatorname{ess\,\inf}_{x \in I_0}p(x) \ge 1$,
$p_{+}:=\operatorname{ess\,\sup}_{x \in I_0}p(x)<\infty$,
and also suppose the $p(\,\cdot\,)$ satisfy the log-condition i.e.
\begin{equation}
\label{N352:gag22}
|p(x)-p(y)|\leq \frac{A}{-\ln|x-y|}\mspace{2mu}, \qquad
|x-y|\leq \frac{1}{2}\mspace{2mu}, \quad
x,y\in I_{0}.
\end{equation}
Let $\lambda(\,\cdot\,)$ be a measurable function on $I_0$ with values in $[0,1]$.
We define the variable exponent Morrey space
$M^{p(\,\cdot\,),\lambda(\,\cdot\,)}(I_0)$ as the set of integrable functions $f$
on $I_0$ such that
$$
I_{p(\,\cdot\,),\lambda(\,\cdot\,)}(f):= \sup_{\substack{x \in I_0 \\ 0< r <2 \pi}} r^{-\lambda(x)}
\int_{\widetilde{I}(x,r)}|f|^{p(y)}\,dy < \infty.
$$
The norm of space $M^{p(\,\cdot\,),\lambda(\,\cdot\,)}(I_0)$ may be defined in two forms,
$$
\|f\|_{1}:=
\inf \biggl\{\eta>0: I_{p(\,\cdot\,),\lambda(\,\cdot\,)}\biggl(\frac{f}{\eta}\biggr)<1 \biggr\} ,
$$
and
$$
\|f\|_{2}:=
\sup_{\substack{x \in I_0 \\ 0< r <2 \pi}}
r^{-\frac{\lambda(x)}{p(x)}}\|f \chi_{\widetilde{I}(x,r)}\|_{L^{p(\,\cdot\,)}(I_0)} .
$$
Since two norms coincide, we put
\begin{equation*}
\|f\|_{M^{p(\,\cdot\,),\lambda(\,\cdot\,)}(I_0)} :=\|f\|_{1} = \|f\|_{2}.
\end{equation*}
The Steklov operator is defined as
$$
s_{h}(f)(x) :=\frac{1}{h} \int_{0}^{h} f(x+t)\,dt.
$$
Our main result is following.
Theorem.
Let $f\in M^{p(\,\cdot\,),\lambda(\,\cdot\,)}(I_0)$,
$\lambda_{+}:=\operatorname{ess\,\sup}_{x \in I_0} \lambda(x)$,
$0 \leq \lambda(x) \leq \lambda_{+} < 1$, and $p(\,\cdot\,)$ satisfy conditions
\eqref{N352:gag21} and \eqref{N352:gag22}, then
the family of operators $s_{h}(f)$, $0 < h \le 1$, is uniformly bounded in
$M^{p(\,\cdot\,),\lambda(\,\cdot\,)}(I_0)$.
This contribution is based on recent joint work with Professor Vagif Guliyev.
Supplementary materials:
abstract.pdf (138.3 Kb)
Language: English
References
-
A. Almeida, J. Hasanov, S. Samko, “Maximal and potential operators in variable exponent Morrey spaces”, Georgian Math. J., 15:2 (2008), 195–208
-
P. L. Butzer, R. J. Nessel, Fourier Analysis and Approximation, Academic Press, New York, 1971
-
O. Kovavcik, J. Rakosnik, “On spaces $L^{p (x)}$ and $W^{k, p(x)}$”, Czechoslovak Math. J., 41 (1991), 592–618
-
I. I. Sharapudinov, “On direct and inverse theorems of approximation theory in variable Lebesgue and Sobolev spaces”, Azerbaijan J. Math., 4:1 (2014), 53–71
-
I. I. Sharapudinov, “Approximation of functions in variable-exponent Lebesgue and Sobolev spaces by finite Fourier–Haar series”, Mat. Sb., 205:2 (2014), 145–160
-
I. I. Sharapudinov, “Approximation of functions in $L^{p(x)}_{2\pi}$ by trigonometric polynomials”, Izv. RAN. Ser. Mat., 77:2 (2013), 197–224
|