|
|
Публикации в базе данных Math-Net.Ru |
Цитирования |
|
2024 |
1. |
Термодинамический цикл твердо-оксидного топливного элемента с внутренней конверсией метана в приближении полного преобразования в однонаправленных реакциях
ТВТ, статья будет опубликована в одном из ближайших номеров |
2. |
В. А. Битюрин, А. Н. Бочаров, А. С. Добровольская, П. П. Иванов, Т. Н. Кузнецова, Е. А. Филимонова, “Анализ механизмов воспламенения стехиометрической топливно-воздушной смеси”, ТВТ, 62:3 (2024), 414–424 |
3. |
А. З. Жук, П. П. Иванов, “Термодинамическая оптимизация гибридной схемы энергетической установки с твердооксидным топливным элементом с внутренней конверсией метана и c газовой турбиной”, ТВТ, 62:2 (2024), 307–312 |
|
2023 |
4. |
А. З. Жук, П. П. Иванов, “Характеристики твердооксидного топливного элемента для термодинамического моделирования энергетических установок”, ТВТ, 61:5 (2023), 777–782 |
1
|
5. |
А. З. Жук, П. П. Иванов, “Моделирование металлогидридного утилизационного цикла в составе топливного элемента с высокотемпературной протонно-обменной мембраной”, ТВТ, 61:1 (2023), 140–144 ; A. Z. Zhuk, P. P. Ivanov, “Simulation of the metal hydride utilization cycle in a fuel cell with a high-temperature proton exchange membrane”, High Temperature, 61:1 (2023), 129–133 |
|
2022 |
6. |
П. П. Иванов, “Термодинамическое и физическое моделирование высокотемпературного топливного элемента с протонно-обменной мембраной”, ТВТ, 60:6 (2022), 933–937 ; P. P. Ivanov, “Thermodynamic and physical simulation of a high-temperature proton-exchange membrane fuel cell”, High Temperature, 60:6 (2022), 865–869 |
1
|
7. |
А. З. Жук, В. И. Борзенко, П. П. Иванов, “Гидротермальное окисление алюминия и металлогидридное компримирование водорода”, ТВТ, 60:5 (2022), 781–788 ; A. Z. Zhuk, V. I. Borsenko, P. P. Ivanov, “Hydrothermal oxidation of aluminum and metal hydride compression of hydrogen”, High Temperature, 60:5 (2022), 716–722 |
|
2021 |
8. |
Е. И. Школьников, П. П. Иванов, “Обоснование технологии выращивания монокристаллов лейкосапфира из корунда технической чистоты”, ТВТ, 59:2 (2021), 242–247 ; E. I. Shkol'nikov, P. P. Ivanov, “Substantiation of technology for the growth of monocrystalline leucosapphire from technically pure corundum”, High Temperature, 59:2 (2021), 216–220 |
|
2020 |
9. |
А. З. Жук, П. П. Иванов, Е. А. Киселева, “Моделирование электрохимического преобразования химической энергии биотоплива в электричество”, ТВТ, 58:2 (2020), 300–305 ; A. Z. Zhuk, P. P. Ivanov, E. A. Kiseleva, “Modeling of the electrochemical transformation of chemical energy of biofuel to electricity”, High Temperature, 58:2 (2020), 292–296 |
4
|
10. |
Е. И. Школьников, П. П. Иванов, “Интенсификация процесса очистки микропористого оксида алюминия от примеси железа с помощью продувки аргоном”, ТВТ, 58:1 (2020), 123–127 ; E. I. Shkol'nikov, P. P. Ivanov, “Intensification of the removal of iron impurities from microporous aluminum oxide via argon blowing”, High Temperature, 58:1 (2020), 121–125 |
1
|
|
2019 |
11. |
А. З. Жук, П. П. Иванов, “Моделирование испарения примеси железа из микропористого оксида алюминия в вакуум”, ТВТ, 57:5 (2019), 786–789 ; A. Z. Zhuk, P. P. Ivanov, “Modeling of the evaporation of iron impurities from microporous aluminum oxide into vacuum”, High Temperature, 57:5 (2019), 761–764 |
1
|
12. |
V. B. Alekseev, V. I. Zalkind, P. P. Ivanov, V. L. Nizovskiy, S. S. Schigel, “Peculiarities of thermophysical processes of “wet compression” in power units with highly atomized water injection and their influence on power units operation”, High Temperature, 57:4 (2019), 547–554 |
2
|
|
2017 |
13. |
В. М. Батенин, П. П. Иванов, В. И. Ковбасюк, “Повышение термодинамической эффективности использования влажного биотоплива в энергоисточниках распределенной генерации”, ТВТ, 55:1 (2017), 76–80 ; V. M. Batenin, P. P. Ivanov, V. I. Kovbasyuk, “Improvement of thermodynamic efficiency of the humid biofuel application in the distributed generation power suppliers”, High Temperature, 55:1 (2017), 70–74 |
3
|
|
2016 |
14. |
П. П. Иванов, “Станция сверхбыстрой зарядки электромобилей как объект децентрализованной энергетики”, ТВТ, 54:1 (2016), 114–119 ; P. P. Ivanov, “An ultrafast electric vehicle charging station as an object of decentralized power engineering”, High Temperature, 54:1 (2016), 117–122 |
|
2014 |
15. |
П. П. Иванов, “О некоторых особенностях расчета двухфазного потока при капельном режиме”, ТВТ, 52:2 (2014), 326–329 ; P. P. Ivanov, “Certain Features of the Calculation of a Two-Phase Flow in the Droplet Regime”, High Temperature, 52:2 (2014), 312–314 |
4
|
|
2013 |
16. |
П. П. Иванов, “Термодинамическая эффективность использования воды в газотурбинном цикле”, ТВТ, 51:4 (2013), 592–597 ; P. P. Ivanov, “Thermodynamic efficiency of water use in a gas turbine cycle”, High Temperature, 51:4 (2013), 532–536 |
3
|
|
2012 |
17. |
П. П. Иванов, В. И. Ковбасюк, Ю. В. Медведев, “К расчетной оптимизации газификатора”, ТВТ, 50:6 (2012), 835–840 ; P. P. Ivanov, V. I. Kovbasyuk, Yu. V. Medvedev, “On the calculated optimization of a gasifier”, High Temperature, 50:6 (2012), 779–784 |
8
|
|
2011 |
18. |
П. П. Иванов, “Термодинамическое моделирование энергетических установок с твердооксидным топливным элементом”, ТВТ, 49:4 (2011), 627–633 ; P. P. Ivanov, “Thermodynamic Modeling of Power Plants Based on Solid Oxide Fuel Cells”, High Temperature, 49:4 (2011), 608–614 |
7
|
|
1983 |
19. |
В. М. Батенин, В. А. Битюрин, В. А. Желнин, П. П. Иванов, С. А. Медин, Г. А. Любимов, В. Р. Сатановский, В. Л. Туровец, “Газодинамические и электрические характеристики МГД-генератора по данным физического и численного экспериментов. Канал РМ Установки У-25”, ТВТ, 21:3 (1983), 567–576 ; V. M. Batenin, V. A. Bityurin, V. A. Zhelnin, P. P. Ivanov, S. A. Medin, G. A. Lyubimov, V. R. Satanovskii, V. L. Turovets, “Gas-dynamic and electrical characteristics of MHD generator according to data from physical and numerical experiments – RM channel of the U-25 device”, High Temperature, 21:3 (1983), 438–447 |
3
|
|
1982 |
20. |
В. А. Битюрин, П. П. Иванов, Г. М. Корягина, Г. А. Любимов, С. А. Медин, Г. Н. Морозов, А. С. Прокоп, “Численное моделирование работы МГД-генератора на переменных режимах в составе МГДЭС”, ТВТ, 20:2 (1982), 347–358 ; V. A. Bityurin, P. P. Ivanov, G. M. Koryagina, G. A. Lyubimov, S. A. Medin, G. N. Morozov, A. S. Prokop, “Numerical-simulation of the operation of a MHD generator in transient regimes in MHD power-stations”, High Temperature, 20:2 (1982), 306–316 |
|
1975 |
21. |
Б. Я. Шумяцкий, В. И. Ковбасюк, Г. М. Корягина, П. П. Иванов, “Исследование оптимальных характеристик МГД-генератора для комбинированных МГДЭС открытого цикла”, ТВТ, 13:2 (1975), 407–412 |
|
1972 |
22. |
П. П. Иванов, В. И. Ковбасюк, Г. М. Корягина, А. П. Рогачев, “К выбору параметров пиковой МГД-установки”, ТВТ, 10:5 (1972), 1097–1101 |
|
1967 |
23. |
В. А. Битюрин, П. П. Иванов, “К определению времени установления неравновесного состояния на входе в канал МГД-генератора”, ТВТ, 5:3 (1967), 418–422 |
|
1965 |
24. |
П. П. Иванов, В. И. Ковбасюк, В. А. Степанов, “Некоторые особенности работы МГД-генератора при больших числах Холла”, ТВТ, 3:6 (1965), 845–850 |
25. |
П. П. Иванов, В. И. Ковбасюк, “К вопросу оптимизации течения неравновесной плазмы в канале МГД-генератора”, ТВТ, 3:4 (1965), 562–568 |
|