N. J. Guliyev, “Inverse square singularities and eigenparameter dependent boundary conditions are two sides of the same coin”, The Quarterly Journal of Mathematics, 74:3 (2023), 889–910 , arXiv: 2001.00061
N. J. Guliyev, “Schrödinger operators with distributional potentials and boundary conditions dependent on the eigenvalue parameter”, J. Math. Phys., 60:6 (2019), 063501 , 23 pp., arXiv: 1806.10459
N. J. Guliyev, “On two-spectra inverse problems”, Proceedings of the American Mathematical Society, 148:10 (2020), 4491–4502 , arXiv: 1803.02567
N. J. Guliyev, “Essentially isospectral transformations and their applications”, Annali di Matematica Pura ed Applicata, 199:4 (2020), 1621–1648 , arXiv: 1708.07497
N. J. Guliyev, “A Riesz basis criterion for Schrödinger operators with boundary conditions dependent on the eigenvalue parameter”, Analysis and Mathematical Physics, 10:1 (2020), 2 , 8 pp., arXiv: 1905.07952
N. J. Guliyev, “Inverse square singularities and eigenparameter dependent boundary conditions are two sides of the same coin”, The Quarterly Journal of Mathematics, 74:3 (2023), 889–910 , arXiv: 2001.00061
N. J. Guliyev, “A Riesz basis criterion for Schrödinger operators with boundary conditions dependent on the eigenvalue parameter”, Analysis and Mathematical Physics, 10:1 (2020), 2 , 8 pp., arXiv: 1905.07952
N. J. Guliyev, “Essentially isospectral transformations and their applications”, Annali di Matematica Pura ed Applicata, 199:4 (2020), 1621–1648 , arXiv: 1708.07497
N. J. Guliyev, “Schrödinger operators with distributional potentials and boundary conditions dependent on the eigenvalue parameter”, J. Math. Phys., 60:6 (2019), 063501 , 23 pp., arXiv: 1806.10459
N. J. Guliyev, Spectral identities for Schrödinger operators, 2019 (Published online) , 7 pp., arXiv: 1910.05812
8.
N. J. Guliyev, V. E. Ismailov, “On the approximation by single hidden layer feedforward neural networks with fixed weights”, Neural Networks, 98 (2018), 296–304 , arXiv: 1708.06219
N. J. Guliyev, V. E. Ismailov, “Approximation capability of two hidden layer feedforward neural networks with fixed weights”, Neurocomputing, 316 (2018), 262–269 , arXiv: 2101.09181
N. J. Guliyev, V. E. Ismailov, “A single hidden layer feedforward network with only one neuron in the hidden layer can approximate any univariate function”, Neural Computation, 28:7 (2016), 1289–1304 , arXiv: 1601.00013
Н. Дж. Кулиев, Обратные задачи для дифференциальных операторов со спектральным параметром в краевых условиях, Дисс. … канд. физ.-матем. наук, Институт математики и механики Национальной академии наук Азербайджана, Баку, 2007 Автореферат
12.
N. J. Guliyev, “A uniqueness theorem for Sturm–Liouville equations with a spectral parameter linearly contained in the boundary conditions”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 25 (2006), 35–40imm.az
13.
Н. Дж. Кулиев, “Вычисление регуляризованного следа для уравнения Штурма–Лиувилля со спектральным параметром в краевом условии”, Akademik M.L. Rəsulovun 90 illiyinə həsr olunmuş “Riyazi fizikan{\i}n üsulları” elmi konfrans{\i}n{\i}n materialları, Издательство Бакинского университета, 2006, 105–108ResearchGate
14.
N. J. Guliyev, “Inverse eigenvalue problems for Sturm–Liouville equations with spectral parameter linearly contained in one of the boundary conditions”, Inverse Problems, 21:4 (2005), 1315–1330 , arXiv: 0803.0566
N. J. Guliyev, “The regularized trace formula for the Sturm–Liouville equation with spectral parameter in the boundary conditions”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 22 (2005), 99–102 , arXiv: 0911.5412
16.
Н. Дж. Кулиев, “Обратные задачи для уравнения Штурма–Лиувилля со спектральным параметром в краевом условии”, Докл. НАН Азерб., 60:3-4 (2004), 10–16ResearchGate