теория приближений, теория функций, функциональный анализ
Основные публикации:
V. E. Ismailov, “A three layer neural network can represent any multivariate function”, J. Math. Anal. Appl., 523:1 (2023), Paper No. 127096
V. E. Ismailov, Ridge functions and applications in neural networks, Mathematical Surveys and Monographs, 263, American Mathematical Society, Providence, 2021 , 186 pp. https://bookstore.ams.org/surv-263
R. A. Aliev, V. E. Ismailov, “A representation problem for smooth sums of ridge functions”, J. Approx. Theory, 257 (2020), 105448, 13 pp.
A. Kh. Asgarova, V. E. Ismailov, “On the representation by sums of algebras of continuous functions”, C. R. Math. Acad. Sci. Paris, 355:9 (2017), 949–955
A. Kh. Asgarova, V. E. Ismailov, “Diliberto-Straus algorithm for the uniform approximation by a sum of two algebras.”, Proc. Indian Acad. Sci. Math. Sci., 127:2 (2017), 361–374
В. Э. Исмаилов, “Аппроксимация суммами ридж функций с фиксированными направлениями”, Алгебра и анализ, 28:6 (2016), 20–69; V. E. Ismailov, “Approximation by sums of ridge functions with fixed directions”, St. Petersburg Math. J., 28:6 (2017), 741–772
N. J. Guliyev, V. E. Ismailov, “A single hidden layer feedforward network with only one neuron in the hidden layer can approximate any univariate function”, Neural Comput., 28:7 (2016), 1289–-1304
V. E. Ismailov, “On the approximation by neural networks with bounded number of neurons in hidden layers”, J. Math. Anal. Appl., 417:2 (2014), 963–969
V. E. Ismailov, A. Pinkus, “Interpolation on lines by ridge functions”, J. Approx. Theory, 175 (2013), 91–113
V. E. Ismailov, “Approximation by neural networks with weights varying on a finite set of directions”, J. Math. Anal. Appl., 389:1 (2012), 72–83
V. E. Ismailov, “On the theorem of M Golomb”, Proc. Indian Acad. Sci. Math. Sci., 119:1 (2009), 45–52
V. E. Ismailov, “On the representation by linear superpositions”, J. Approx. Theory, 151:2 (2008), 113–125
R. A. Aliev, A. A. Asgarova, V. E. Ismailov, “The double difference property for the class of locally Hölder continuous functions”, Mosc. Math. J., 22:3 (2022), 393–400
2021
3.
А. Х. Аскарова, В. Э. Исмаилов, “Теорема типа Чебышева для характеризации наилучшего приближения непрерывной функции суммой двух алгебр”, Матем. заметки, 109:1 (2021), 19–26; A. Kh. Askarova, V. È. Ismailov, “A Chebyshev-Type Theorem Characterizing Best Approximation of a Continuous Function by Elements of the Sum of Two Algebras”, Math. Notes, 109:1 (2021), 15–20
V. E. Ismailov, Ridge functions and applications in neural networks, Mathematical Surveys and Monographs, 263, American Mathematical Society, Providence, 2021 , 186 pp. https://bookstore.ams.org/surv-263
V. E. Ismailov, “Computing the approximation error for neural networks with weights varying on fixed directions”, Numer. Funct. Anal. Optim., 40:12 (2019), 1395–1409
R. A. Aliev, A. A. Asgarova, V. E. Ismailov, “On the Hölder continuity in ridge function representation”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 45:1 (2019), 31–40
2018
10.
V. E. Ismailov, “A note on the criterion for a best approximation by superpositions of functions”, Studia Math., 240:2 (2018), 193–199
11.
N. J. Guliyev, V. E. Ismailov, “On the approximation by single hidden layer feedforward neural networks with fixed weights”, Neural Networks, 98 (2018), 296–304
N. J. Guliyev, V. E. Ismailov, “Approximation capability of two hidden layer feedforward neural networks with fixed weights”, Neurocomputing, 316 (2018), 262–269
A. Kh. Asgarova, V. E. Ismailov, “On the representation by sums of algebras of continuous functions”, C. R. Math. Acad. Sci. Paris, 355:9 (2017), 949–955
V. E. Ismailov, E. Savas, “Measure theoretic results for approximation by neural networks with limited weights”, Numer. Funct. Anal. Optim., 38:7 (2017), 819–830
A. Kh. Asgarova, V. E. Ismailov, “Diliberto-Straus algorithm for the uniform approximation by a sum of two algebras.”, Proc. Indian Acad. Sci. Math. Sci., 127:2 (2017), 361–374
В. Э. Исмаилов, “Аппроксимация суммами ридж функций с фиксированными направлениями”, Алгебра и анализ, 28:6 (2016), 20–69; V. E. Ismailov, “Approximation by sums of ridge functions with fixed directions”, St. Petersburg Math. J., 28:6 (2017), 741–772
N. J. Guliyev, V. E. Ismailov, “A single hidden layer feedforward network with only one neuron in the hidden layer can approximate any univariate function”, Neural Comput., 28:7 (2016), 1289–-1304
R. A. Aliev, V. E. Ismailov, T. M. Shahbalayeva, “On the representation by sums of ridge functions”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 41:2 (2015), 106–118
22.
V. E. Ismailov, “Alternating algorithm for the approximation by sums of two compositions and ridge functions”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 41:1 (2015), 146–152
23.
V. E. Ismailov, “Approximation by ridge functions and neural networks with a bounded number of neurons”, Appl. Anal., 94:11 (2015), 2245–2260
V. E. Ismailov, “A note on the best L_2 approximation by ridge functions”, Appl. Math. E-Notes, 7 (2007), 71–76
2006
39.
В. Э. Исмаилов, “О методах вычисления точного значения наилучшего приближения суммами функций одной переменной”, Сиб. матем. журн., 47:5 (2006), 1076–1082; V. È. Ismailov, “Methods for computing the least deviation from the sums of functions of one variable”, Siberian Math. J., 47:5 (2006), 883–888
V. E. Ismailov, “On two-sided exact estimates for the best approximation by sums ϕ(x)+ψ(y)”, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 25:1 (2005), 89–94
42.
V. E. Ismailov, “On a theorem of approximation by the sums g1(x1)+g2(x2)+⋯+gn(xn)”, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 25:4 (2005), 49–54
2004
43.
V. E. Ismailov, “On some classes of bivariate functions characterized by formulas for the best approximation”, Rad. Mat., 13:1 (2004), 53–62
2003
44.
V. E. Ismailov, “On discontinuity of the best approximation of a continuous function.”, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 23:4 (2003), 57–60
45.
V. E. Ismailov, “On behaviour of the best approximation as a function of an approximation set”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 19 (2003), 113–116
2002
46.
V. E. Ismailov, “Theorem on lightning bolts for elementary domains”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 17 (2002), 78–85
1999
47.
V. E. Ismailov, “On some geometrical conditions for the existence of the best approximating function of the form ϕ(x)+ψ(y)”, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 19:1-2 (1999), 91–95
1997
48.
V. E. Ismailov, “On a characteristic property of a family of classes of best approximation”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 6 (1997), 74–82
49.
M-B. A. Babaev, V. E. Ismailov, “Two-sided estimates for the best approximation in domains different from the parallelepiped”, Funct. Approx. Comment. Math., 25 (1997), 121–128
1996
50.
V. E. Ismailov, “Two-sided estimates for best approximation in domains consisting of a union of rectangles”, Izv. Akad. Nauk Azerb. Ser. Fiz.-Tekh. Mat. Nauk, 17:1-3 (1996), 109–114