|
|
Publications in Math-Net.Ru |
Citations |
|
2023 |
1. |
A. A. Golyshev, N. A. Sibiryakova, “Similarity laws in direct metal deposition of cermet tracks”, Prikl. Mekh. Tekh. Fiz., 64:5 (2023), 102–107 ; J. Appl. Mech. Tech. Phys., 64:5 (2024), 821–826 |
2. |
A. G. Malikov, A. A. Golyshev, I. E. Vitoshkin, “Current trends in laser welding and additive technologies (review)”, Prikl. Mekh. Tekh. Fiz., 64:1 (2023), 36–59 ; J. Appl. Mech. Tech. Phys., 64:1 (2023), 31–49 |
3
|
|
2022 |
3. |
A. A. Golyshev, S. V. Dolgova, “Influence of SiC ceramic fiber in a metal matrix compound on its resistance under high-rate loading”, Prikl. Mekh. Tekh. Fiz., 63:6 (2022), 145–149 ; J. Appl. Mech. Tech. Phys., 63:6 (2022), 1030–1034 |
2
|
4. |
A. A. Golyshev, A. M. Orishich, “Effect of laser action parameters on the formation of a bath of the molten B$_4$C – Ti-6Al-4V cermet mixture”, Prikl. Mekh. Tekh. Fiz., 63:2 (2022), 104–116 ; J. Appl. Mech. Tech. Phys., 63:2 (2022), 268–278 |
3
|
|
2021 |
5. |
V. M. Fomin, T. A. Brusentseva, A. A. Golyshev, A. G. Malikov, A. V. Mishin, A. M. Orishich, A. A. Filippov, “Creation of a heterogeneous material based on the titanium alloy and titanium boride by the method of controlled laser processing”, Prikl. Mekh. Tekh. Fiz., 62:5 (2021), 58–67 ; J. Appl. Mech. Tech. Phys., 5:5 (2021), 752–759 |
3
|
|
2020 |
6. |
V. M. Fomin, A. A. Golyshev, A. G. Malikov, A. M. Orishich, A. A. Filippov, “Creation of a functionally graded material by the method of additive laser fusion”, Prikl. Mekh. Tekh. Fiz., 61:5 (2020), 224–234 ; J. Appl. Mech. Tech. Phys., 61:5 (2020), 878–887 |
18
|
|
2019 |
7. |
A. A. Golyshev, A. M. Orishich, A. A. Filippov, “Similarity laws in laser cladding of cermet coatings”, Prikl. Mekh. Tekh. Fiz., 60:4 (2019), 194–205 ; J. Appl. Mech. Tech. Phys., 60:4 (2019), 758–767 |
20
|
|
2017 |
8. |
V. M. Fomin, A. A. Golyshev, V. F. Kosarev, A. G. Malikov, A. M. Orishich, N. S. Ryashin, A. A. Filippov, V. S. Shikalov, “Creation of heterogeneous materials on the basis of $\mathrm{B}_4\mathrm{C}$ and $\mathrm{Ni}$ powders by the method of cold gas-dynamic spraying with a subsequent layer-by-layer laser action”, Prikl. Mekh. Tekh. Fiz., 58:5 (2017), 218–227 ; J. Appl. Mech. Tech. Phys., 58:5 (2017), 947–955 |
34
|
9. |
V. M. Fomin, A. A. Golyshev, A. M. Orishich, V. B. Shulyat'ev, “Energy balance in high-quality cutting of steel by fiber and ян$_2$ lasers”, Prikl. Mekh. Tekh. Fiz., 58:2 (2017), 212–220 ; J. Appl. Mech. Tech. Phys., 58:2 (2017), 371–378 |
18
|
|
2015 |
10. |
V. M. Fomin, A. A. Golyshev, A. G. Malikov, A. M. Orishich, V. B. Shulyat'ev, “Mechanical characteristics of high-quality laser cutting of steel by fiber and $\mathrm{CO}_2$ lasers”, Prikl. Mekh. Tekh. Fiz., 56:4 (2015), 215–225 |
19
|
11. |
A. A. Golyshev, A. G. Malikov, A. M. Orishich, V. B. Shulyat'ev, “Experimental comparison of laser energy losses in high-quality laser-oxygen cutting of low-carbon steel using radiation from fibre and CO<sub>2</sub> lasers”, Kvantovaya Elektronika, 45:9 (2015), 873–878 [Quantum Electron., 45:9 (2015), 873–878 ] |
11
|
|
2014 |
12. |
A. A. Golyshev, A. G. Malikov, A. M. Orishich, V. B. Shulyat'ev, “Experimental study of laser-oxygen cutting of low-carbon steel using fibre and CO<sub>2</sub> lasers under conditions of minimal roughness”, Kvantovaya Elektronika, 44:10 (2014), 970–974 [Quantum Electron., 44:10 (2014), 970–974 ] |
17
|
13. |
A. A. Golyshev, A. G. Malikov, A. M. Orishich, V. B. Shulyat'ev, “High-quality laser cutting of stainless steel in inert gas atmosphere by ytterbium fibre and CO<sub>2</sub> lasers”, Kvantovaya Elektronika, 44:3 (2014), 233–238 [Quantum Electron., 44:3 (2014), 233–238 ] |
15
|
|
Organisations |
|
|
|
|