L. O. Chekhov, M. Mazzocco, “Isomonodromic deformations and twisted
Yangians arising in Teichmuller theory”, Advances in Mathematics, 226:6 (2011), 4731–4775
L. Chekhov, B. Eynard, and N. Orantin, “Free energy topological expansion for the 2-matrix model”, JHEP, 12:12 (2006), 053, 30 с.
L. Chekhov, B. Eynard, “Hermitean matrix model free energy: Feynman graph technique
for all genera”, JHEP, 0603 (2006), 014, 20 с.
V. V. Fok, L. O. Chekhov, “Kvantovye prostranstva Teikhmyullera”, TMF, 120:3 (1999), 511–528
J. Ambjørn, L. Chekhov, C. F. Kristjansen, and Yu. Makeenko, “Matrix model calculations beyond the spherical limit”, Nucear Physics B, 404:3 (1993), 681–720
Leonid O. Chekhov, Michael Shapiro, “Log-Canonical Coordinates for Symplectic Groupoid and Cluster Algebras”, Int. Math. Res. Not. IMRN, 2023:11 (2023), 9565–9652;
L. O. Chekhov, “Cluster variables for affine Lie–Poisson systems”, Theoret. and Math. Phys., 217:3 (2023), 1987–2004
2022
3.
L. O. Chekhov, M. Z. Shapiro, H. Shibo, “Roots of the characteristic equation for the symplectic groupoid”, Russian Math. Surveys, 77:3 (2022), 552–554
2021
4.
Leonid Chekhov, Marta Mazzocco, Vladimir Rubtsov, “Quantised Painlevé monodromy manifolds, Sklyanin and Calabi–Yau algebras”, Adv. Math., 376 (2021), 107442 , 52 pp. ;
V. M. Buchstaber, A. N. Varchenko, A. P. Veselov, P. G. Grinevich, S. Grushevsky, S. Yu. Dobrokhotov, A. V. Zabrodin, A. V. Marshakov, A. E. Mironov, N. A. Nekrasov, S. P. Novikov, A. Yu. Okounkov, M. A. Olshanetsky, A. K. Pogrebkov, I. A. Taimanov, M. A. Tsfasman, L. O. Chekhov, O. K. Sheinman, S. B. Shlosman, “Igor' Moiseevich Krichever (on his 70th birthday)”, Russian Math. Surveys, 76:4 (2021), 733–743
2020
6.
Leonid O. Chekhov, “Symplectic Structures on Teichmüller Spaces $\mathfrak T_{g,s,n}$ and Cluster Algebras”, Proc. Steklov Inst. Math., 309 (2020), 87–96
7.
L. O. Chekhov, “Fenchel–Nielsen coordinates and Goldman brackets”, Russian Math. Surveys, 75:5 (2020), 929–964
2019
8.
L. Chekhov, P. Norbury, “Topological recursion with hard edges”, Int. J. Math., 30:3 (2019), 1950014 , 29 pp., arXiv: 1702.08631;
Leonid Chekhov, Marta Mazzocco, “Colliding holes in Riemann surfaces and quantum cluster algebras”, Nonlinearity, 31:1 (2018), 54–107 , arXiv: 1509.07044v4
Jorgen Ellegaard Andersen, Gaetan Borot, Leonid O. Chekhov, Nicolas Orantin, The ABCD of topological recursion, 2017 , 75 pp., arXiv: 1703.03307
13.
Leonid Chekhov, Marta Mazzocco, Vladimir Rubtsov, Algebras of quantum monodromy data and decorated character varieties, 2017 , 22 pp., arXiv: 1705.01447
14.
L. O. Chekhov, M. Mazzocco, “On a Poisson homogeneous space of bilinear forms with a Poisson–Lie action”, Russian Math. Surveys, 72:6 (2017), 1109–1156
15.
Leonid O. Chekhov, Marta Mazzocco, Vladimir N. Rubtsov, “Painlevé monodromy manifolds, decorated character varieties, and cluster algebras”, Int. Math. Res. Not. IMRN, 2017:24 (2017), 7639–7691
J. E. Andersen, L. O. Chekhov, P. Norbury, R. C. Penner, “Models of discretized moduli spaces, cohomological field theories, and Gaussian means”, J. Geom. Phys., 98 (2015), 312–339
J. E. Andersen, L. O. Chekhov, P. Norbury, R. C. Penner, “Topological recursion for Gaussian means and cohomological field theories”, Theoret. and Math. Phys., 185:3 (2015), 1685–1717
2014
19.
L. Chekhov, M. Shapiro, “Teichmüller spaces of Riemann surfaces with orbifold points of arbitrary order and cluster variables”, Int. Math. Res. Not. IMRN, 2014:10 (2014), 2746–2772 , arXiv: 1111.3963
J. Ambjørn, L. O. Chekhov, “A matrix model for hypergeometric Hurwitz numbers”, Theoret. and Math. Phys., 181:3 (2014), 1486–1498
2013
22.
L. Chekhov, B. Eynard, S. Ribault, “Seiberg-Witten equations and non-commutative spectral curves in Liouville theory”, J. Math. Phys., 54:2 (2013), 022306 , 21 pp., arXiv: 1209.3984
J. E. Andersen, L. O. Chekhov, R. C. Penner, Ch. M. Reidys, P. Sułkowski, “Topological recursion for chord diagrams, RNA complexes, and cells in moduli spaces”, Nuclear Phys. B, 866:3 (2013), 414–443 , arXiv: 1205.0658
L. Chekhov, M. Mazzocco, “Poisson algebras of block-upper-triangular bilinear forms and braid group action”, Comm. Math. Phys., 322:1 (2013), 49–71 , arXiv: 1012.5251
L. Chekhov, M. Mazzocco, Quantum ordering for quantum geodesic functions of orbifold Riemann surfaces, 2013 , 22 pp., arXiv: 1309.3493
26.
J. E. Andersen, L. O. Chekhov, R. C. Penner, Ch. M. Reidys, P. Sulkowski, “Enumeration of RNA complexes via random matrix theory”, Biochemical Society Transactions, 41:2 (2013), 652–655
L. Chekhov, M. Mazzocco, “Block trangular bilinear forms and braid group action”, Tropical geometry and integrable systems, A conference on Tropical Geometry and Integrable Systems (Glasgow 3–8 July 2011), Contemp. Math., 580, eds. C. Athorne, D. Maclagan, and I. Strachan, Amer. Math. Soc., Providence, RI, 2012, 85–94
L. Chekhov, M. Mazzocco, “Teichmüller spaces as degenerated symplectic leaves in Dubrovin-Ugaglia Poisson manifolds”, Phys. D, 241:23-24 (2012), 2109–2121
L. O. Chekhov, “Logarithmic potential $\beta$-ensembles and Feynman graphs”, Proc. Steklov Inst. Math., 272 (2011), 58–74
30.
L. O. Chekhov, B. Eynard, O. Marchal, “Topological expansion of the $\beta$-ensemble model and quantum algebraic geometry in the sectorwise approach”, Theoret. and Math. Phys., 166:2 (2011), 141–185
31.
L. Chekhov, M. Mazzocco, “Isomonodromic deformations and twisted Yangians arising in Teichmüller theory”, Adv. Math., 226:6 (2011), 4731–4775
L. Chekhov, “Chapter 29. Algebraic geometry”, The Oxford Handbook of Random Matrix Theory, Oxford Handbooks in Mathematics, eds. G. Akemann, J. Baik, and P. Di Francesco, Oxford, 2011
2010
33.
L. Chekhov, M. Mazzocco, “Shear coordinate description of the quantized versal unfolding of a $D_4$ singularity”, J. Phys. A, 43:44 (2010), 442002 , 13 pp.
L. Chekhov, M. Mazzocco, Poisson algebras of block-upper-triangular bilinear forms and braid group action, 2010 , 22 pp., arXiv: 1012.5251
35.
V. M. Buchstaber, L. O. Chekhov, S. Yu. Dobrokhotov, S. M. Gusein-Zade, Yu. S. Ilyashenko, S. M. Natanzon, S. P. Novikov, G. I. Olshanski, A. K. Pogrebkov, O. K. Sheinman, S. B. Shlosman, M. A. Tsfasman, “Igor Krichever”, Mosc. Math. J., 10:4 (2010), 833–834
2009
36.
L. O. Chekhov, “Riemann Surfaces with Orbifold Points”, Proc. Steklov Inst. Math., 266 (2009), 228–250
37.
L. O. Chekhov, “Orbifold Riemann surfaces and geodesic algebras”, J. Phys. A, 42:30 (2009), 304007 , 32 pp.
M. Mazzocco, L. O. Chekhov, “Orbifold Riemann surfaces: Teichmüller spaces and algebras of geodesic functions”, Russian Math. Surveys, 64:6 (2009), 1079–1130
2007
39.
L. O. Chekhov, R. C. Penner, “On quantizing Teichmüller and Thurston theories”, Handbook of Teichmüller theory, Vol. I, IRMA Lect. Math. Theor. Phys., 11, Eur. Math. Soc., Zürich, 2007, 579–645
40.
Leonid O. Chekhov, “Teichmüller Theory of Bordered Surfaces”, SIGMA, 3 (2007), 66–37
L. Chekhov, B. Eynard, “Matrix eigenvalue model: Feynman graph technique for all genera”, J. High Energy Phys., 2006, no. 12, 026 , 29 pp. (electronic)
L. Chekhov, B. Eynard, N. Orantin, “Free energy topological expansion for the 2-matrix model”, J. High Energy Phys., 2006, no. 12, 053 , 31 pp. (electronic)
L. O. Chekhov, R. C. Penner, “Introduction to quantum Thurston theory”, Russian Math. Surveys, 58:6 (2003), 1141–1183
2002
54.
L. O. Chekhov, “Integrable deformations of systems on graphs with loops”, Russian Math. Surveys, 57:3 (2002), 587–588
2001
55.
L. O. Chekhov, V. V. Fock, “Observables in 3D gravity and geodesic algebras”, Quantization, gauge theory, and strings (Moscow, 2000), v. I, Sci. World, Moscow, 2001, 237–247
56.
L. O. Chekhov, “Observables in $2+1$ Gravity and Noncommutative Teichmüller Spaces”, Theoret. and Math. Phys., 129:2 (2001), 1609–1616
57.
L. O. Chekhov, “Matrix Models: Geometry of Moduli Spaces and Exact Solutions”, Theoret. and Math. Phys., 127:2 (2001), 557–618
2000
58.
L. O. Chekhov, V. V. Fock, “Observables in 3D gravity and geodesic algebras”, Quantum groups and integrable systems (Prague, 2000), Czechoslovak J. Phys., 50, no. 11, 2000, 1201–1208
L. O. Chekhov, N. V. Puzyrnikova, “Integrable systems on graphs”, Russian Math. Surveys, 55:5 (2000), 992–994
1999
60.
Arutyunov G. E., L. O. Chekhov, Frolov S. A., “Quantum dynamical $R$-matrices”, Moscow Seminar in Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 191, Amer. Math. Soc., Providence, RI, 1999, 1–32
61.
L. Chekhov, K. Palamarchuk, “Two-logarithm Matrix model with an external field”, Modern Phys. Lett. A, 14:32 (1999), 2229–2243
L. O. Chekhov, “A spectral problem on graphs and $L$-functions”, Russian Math. Surveys, 54:6 (1999), 1197–1232
64.
V. V. Fock, L. O. Chekhov, “Quantum Mapping Class Group, Pentagon Relation, and Geodesics”, Proc. Steklov Inst. Math., 226 (1999), 149–163
65.
V. V. Fock, L. O. Chekhov, “A quantum Teichmüller space”, Theoret. and Math. Phys., 120:3 (1999), 1245–1259
1998
66.
J. Ambjørn, L. Chekhov, “The NBI matrix model of IIB superstrings”, J. High Energy Phys., 1998, no. 12, 7 , 13 pp.
67.
G. E. Arutyunov, L. O. Chekhov, S. A. Frolov, “$R$-matrix quantization of the elliptic Ruijsenaars–Schneider model”, Comm. Math. Phys., 192:2 (1998), 405–432
G. E. Arutyunov, S. A. Frolov, L. O. Chekhov, “$R$-matrix quantization of the elliptic Ruijsenaars–Schneider model”, Theoret. and Math. Phys., 111:2 (1997), 536–562
1996
71.
L. Chekhov, “$L$-functions in scattering on generalized Cayley trees”, International Conference on Nonlinear Dynamics, Chaotic and Complex Systems (Zakopane, 1995), J. Tech. Phys., 37, no. 3-4, 1996, 301–305
72.
L. Chekhov, C. Kristjansen, “Hermitian matrix model with plaquette interaction”, Nuclear Phys. B, 479:3 (1996), 683–696
J. Ambjørn, L. Chekhov, C. F. Kristjansen, Yu. Makeenko, “Matrix model calculations beyond the spherical limit”, Nuclear Phys. B, 404:1-2 (1993), 127–172
L. O. Chekhov, A. D. Mironov, A. V. Zabrodin, “$p$-adic string world sheets: higher genera”, Problems of modern quantum field theory (Alushta, 1989), Res. Rep. Phys., Springer, Berlin, 1989, 76–85
88.
L. O. Chekhov, A. D. Mironov, A. V. Zabrodin, “Multiloop calculations in $p$-adic string theory and Bruhat–Tits trees”, Comm. Math. Phys., 125:4 (1989), 675–711
L. O. Chekhov, A. D. Mironov, A. V. Zabrodin, “Multiloop calculus in $p$-adic string theory and Bruhat–Tits trees”, Modern Phys. Lett. A, 4:13 (1989), 1227–1235
V. K. Krivoshchekov, A. A. Slavnov, L. O. Chekhov, “Effective Lagrangian for supersymmetric quantum chromodynamics and the problem of dynamical breaking of supersymmetry”, Theoret. and Math. Phys., 72:1 (1987), 686–693
1986
92.
L. O. Chekhov, V. K. Krivoshchekov, “Local and global integrability of supersymmetric anomalies”, Modern Phys. Lett. A, 1:7-8 (1986), 501–507
V. K. Krivoshchekov, L. O. Chekhov, “Effective action for supersymmetric chiral anomaly”, Theoret. and Math. Phys., 69:2 (1986), 1093–1101
94.
V. K. Krivoshchekov, P. B. Medvedev, L. O. Chekhov, “Explicit form of non-Abelian self-consistent chiral supersymmetric anomaly”, Theoret. and Math. Phys., 68:2 (1986), 796–801
1985
95.
L. O. Chekhov, “Nonlinear $\sigma$ model in the case of $N\times\alpha N$ rectangular matrices in two-dimensional Euclidean space”, Theoret. and Math. Phys., 63:3 (1985), 570–576
Integrable structures on directed networks L. O. Chekhov International Conference "Integrability" Dedicated to 75th Anniversary of A. K. Pogrebkov September 22, 2021 17:00
Геометрическая природа квантовых кластерных алгебр L. O. Chekhov Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar) August 26, 2015 14:00
Квантовая алгебраическая геометрия L. O. Chekhov Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar) April 7, 2010 18:30
Янгианные алгебры, возникающие в теории Тейхмюллера L. O. Chekhov Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar) August 19, 2009 14:00