Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Dubovski, Pavel Borisovich

Statistics Math-Net.Ru
Total publications: 8
Scientific articles: 8
Presentations: 2

Number of views:
This page:749
Abstract pages:1827
Full texts:962
References:134
Professor
Doctor of physico-mathematical sciences (2000)
Speciality: 01.01.03 (Mathematical physics)
E-mail:
Keywords: kinetic equations; coagulation; fragmentation; non-Fredholm integral equations; conservation laws; infinite systems of differential equations; generalized solutions; adjoint equations; mathematical modeling; natural spaces; phase transition; inverse problems.
UDC: 517.9, 517.968.7, 519.86
MSC: 34, 35, 45, 76, 82

Subject:

Kinetics of Particles, Hydrodynamic Limit, Fluid Dynamics, Conservation Laws, Inverse Problems, Mathematical Modeling, Dynamic Systems.

   
Main publications:
  1. Dubovski P.B., “Existence, uniqueness and stability for spatially inhomogeneous Becker-Doring equations with diffusion and convection terms”, Annales de la Faculte des Sciences de Toulouse, 17:3 (2008), 461–493  zmath
  2. Dubovski P.B., Ha S.Y., “Existence, uniqueness and stability for spatially inhomogeneous Becker-Doring equations with diffusion and convection terms”, Annales de la Faculte des Sciences de Toulouse, 17:3 (2008), 461–493  zmath
  3. Agoshkov V.I., Dubovski P.B., Shutyaev V.P., Methods of Solving Mathematical Physics Problems, Cambridge International Science, 2006  zmath

https://www.mathnet.ru/eng/person8930
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/231203

Publications in Math-Net.Ru Citations
2001
1. P. B. Dubovski, “Solubility of the transport equation in the kinetics of coagulation and fragmentation”, Izv. RAN. Ser. Mat., 65:1 (2001),  3–24  mathnet  mathscinet  zmath; Izv. Math., 65:1 (2001), 1–22  scopus 5
2000
2. P. B. Dubovski, “Analytic solution of the fragmentation equation by methods of the theory of adjoint equations”, Differ. Uravn., 36:10 (2000),  1385–1392  mathnet  mathscinet; Differ. Equ., 36:10 (2000), 1529–1537
3. P. B. Dubovski, “New discrete model of coagulation kinetics and properties of continuous analog”, Matem. Mod., 12:9 (2000),  3–15  mathnet  mathscinet  zmath 2
1995
4. P. B. Dubovski, “Convergence of a coagulation equation with a source to the equilibrium state”, Differ. Uravn., 31:4 (1995),  684–689  mathnet  mathscinet; Differ. Equ., 31:4 (1995), 635–640
1991
5. P. B. Dubovski, “Generalized solutions of coagulation equations”, Funktsional. Anal. i Prilozhen., 25:2 (1991),  62–64  mathnet  mathscinet  zmath; Funct. Anal. Appl., 25:2 (1991), 133–134  isi 2
1990
6. P. B. Dubovski, “Solutions of a spatially inhomogeneous equation of coagulation taking into account particle breakdown”, Differ. Uravn., 26:3 (1990),  508–513  mathnet  mathscinet; Differ. Equ., 26:3 (1990), 380–384 1
7. P. B. Dubovski, “An iterative method for solving the coagulation equation with spatially inhomogeneous velocity fields”, Zh. Vychisl. Mat. Mat. Fiz., 30:11 (1990),  1755–1757  mathnet; U.S.S.R. Comput. Math. Math. Phys., 30:6 (1990), 116–117 3
1986
8. V. A. Galkin, P. B. Dubovski, “Solutions of a coagulation equation with unbounded kernels”, Differ. Uravn., 22:3 (1986),  504–509  mathnet  mathscinet  zmath 2

Presentations in Math-Net.Ru
1. Quasi-Bessel equations: existence and hyper-dimensionality
P. B. Dubovski
Seminar on Analysis, Differential Equations and Mathematical Physics
April 20, 2023 18:00
2. Mathematics of parking: Varying parking rate
P. B. Dubovski, M. Tamarov
Mathematical Physics, Dynamical Systems and Infinite-Dimensional Analysis – 2021
July 8, 2021 16:55   

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024