A multidimensional analologue of ciclides of Dupin was considers: double canal hypersurfaces. A generalization were proved of the theorems about the set of centres $C_1$ and $C_2$ of the generating hyperspheres.
Biography
Graduated from Faculty of Mathematics and Mechanics of Tomsk State University. Ph.D.thesis was defendet in 1971. A list of my works contains more than 100 titles.
Main publications:
K geometrii tsentralnoi proektsii n-poverkhnostei v evklidovom prostranstve $E^n$ // Izv. VUZov, matem., 1998, # 6, s. 96–96.
Dvazhdy kanalovye giperpoverkhnosti v evklidovom prostranstve $E^n$ // Matem. sb., 2000, t. 191, # 6, s. 155–160.
K geometrii pary ortogonalnykh $n$-poverkhnostei v $E^2n$ // SMZh, 1995, t. 36, # 1, s. 228–232.
K geometrii pary ortogonalnykh $n$-poverkhnostei v $E^{2n}$ // SMZh, 1995, t. 36, # 1, s. 228–232.
Preobrazovanie Bianki $n$-poverkhnostei v $E^{2n-1}$ // Izv. VUZov, matem., 1997, # 9, s. 71–74.
M. A. Cheshkova, “Windings of tori and models of the projective plane”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 181 (2020), 118–120
2018
2.
M. A. Cheshkova, “Construction of geodesics circle for surfaces of revolution of constant Gaussian curvature”, Sib. J. Pure and Appl. Math., 18:3 (2018), 64–74; J. Math. Sci., 253:3 (2020), 360–368
2006
3.
M. A. Cheshkova, “Congruences of Hypersheres”, Mat. Tr., 9:1 (2006), 169–175; Siberian Adv. Math., 16:4 (2006), 1–7
M. A. Cheshkova, “Geometry of a Doubly Canal Hypersurface in the Euclidean Space $\mathbb E^n$”, Mat. Tr., 6:1 (2003), 169–181; Siberian Adv. Math., 14:2 (2004), 1–13
2001
6.
M. A. Cheshkova, “Molding hypersurfaces in Euclidean space”, Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 3, 73–74; Russian Math. (Iz. VUZ), 45:3 (2001), 69–70
7.
M. A. Cheshkova, “Evolute Surfaces in $E^4$”, Mat. Zametki, 70:6 (2001), 951–953; Math. Notes, 70:6 (2001), 870–872
M. A. Cheshkova, “On the geometry of the central projection of an $n$-surface in the Euclidean space $E^{n+m}$”, Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 6, 96–98; Russian Math. (Iz. VUZ), 42:6 (1998), 88–90
11.
M. A. Cheshkova, “On a property of orthogonal surfaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 3, 63–64; Russian Math. (Iz. VUZ), 42:3 (1998), 60–61
1997
12.
M. A. Cheshkova, “The Bianchi transformation of $n$-surfaces in $E^{2n-1}$”, Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 9, 71–74; Russian Math. (Iz. VUZ), 41:9 (1997), 68–71
13.
M. A. Cheshkova, “On a torse-forming vector field”, Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 1, 66–68; Russian Math. (Iz. VUZ), 41:1 (1997), 63–65
1995
14.
M. A. Cheshkova, “On geometry of a pair of orthogonal $n$-surfaces in $E_{2n}$”, Sibirsk. Mat. Zh., 36:1 (1995), 228–232; Siberian Math. J., 36:1 (1995), 208–212
M. A. Cheshkova, “Connections associated with the Codazzi tensor field”, Tr. Geom. Semin., 22 (1994), 89–90
1993
16.
M. A. Cheshkova, “Hypersurfaces found in the Peterson correspondence”, Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 10, 69–72; Russian Math. (Iz. VUZ), 37:10 (1993), 68–71
M. A. Cheshkova, “Geometry of a vector field on a Riemannian manifold”, Mat. Zametki, 54:5 (1993), 153–155; Math. Notes, 54:5 (1993), 1182–1183
1991
18.
M. A. Cheshkova, “On the geometry of a normalized surface”, Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 9, 67–68; Soviet Math. (Iz. VUZ), 35:9 (1991), 66
1990
19.
M. A. Cheshkova, “A deformation algebra that is associated with a Codazzi field”, Sibirsk. Mat. Zh., 31:5 (1990), 190–193; Siberian Math. J., 31:5 (1990), 859–862
1972
20.
M. A. Cheshkova, “On the geometry of the manifold $M_{n-1}$ ($L_{n-1}$) in $A_n$”, Izv. Vyssh. Uchebn. Zaved. Mat., 1972, no. 1, 94–101
1969
21.
M. A. Cheshkova, “The manifold $M_{n-1}$ ($L_{n-1}$) in the $n$-dimensional equiaffine space $E_n$”, Izv. Vyssh. Uchebn. Zaved. Mat., 1969, no. 7, 96–100