Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Ivashkovich, Sergei Mikhailovich

Statistics Math-Net.Ru
Total publications: 12
Scientific articles: 12
Presentations: 1

Number of views:
This page:3132
Abstract pages:2735
Full texts:1034
References:345
E-mail:

https://www.mathnet.ru/eng/person8622
List of publications on Google Scholar
https://zbmath.org/authors/ai:ivashkovich.sergei
https://mathscinet.ams.org/mathscinet/MRAuthorID/218405

Publications in Math-Net.Ru Citations
2012
1. S. Ivashkovich, “Bochner–Hartogs type extension theorem for roots and logarithms of holomorphic line bundles”, Trudy Mat. Inst. Steklova, 279 (2012),  269–287  mathnet  mathscinet  elib; Proc. Steklov Inst. Math., 279 (2012), 257–275  isi 3
2001
2. S. M. Ivashkovich, V. V. Shevchishin, “Holomorphic Structure on the Space of Riemann Surfaces with Marked Boundary”, Trudy Mat. Inst. Steklova, 235 (2001),  98–109  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 235 (2001), 91–102 1
1998
3. S. M. Ivashkovich, V. V. Shevchishin, “Deformations of non-compact complex curves and envelopes of meromorphy of spheres”, Mat. Sb., 189:9 (1998),  23–60  mathnet  mathscinet  zmath; Sb. Math., 189:9 (1998), 1295–1333  isi  scopus 11
1991
4. S. M. Ivashkovich, “Hartogs-type theorems for meromorphic mappings, spherical shells and the complex Plateau problem”, Dokl. Akad. Nauk SSSR, 321:5 (1991),  892–895  mathnet  mathscinet  zmath; Dokl. Math., 44:3 (1992), 816–819
5. S. M. Ivashkovich, “Spherical shells as obstructions to continuation of holomorphic mappings”, Mat. Zametki, 49:2 (1991),  141–142  mathnet  mathscinet  zmath; Math. Notes, 49:2 (1991), 215–216  isi 1
1988
6. S. M. Ivashkovich, “A Thullen-type extension theorem for line bundles with $L^2$-bounded curvature”, Dokl. Akad. Nauk SSSR, 303:2 (1988),  284–286  mathnet  mathscinet  zmath; Dokl. Math., 38:3 (1989), 516–518
1986
7. S. M. Ivashkovich, “The hartogs phenomenon for holomorphically convex Kähler manifolds”, Izv. Akad. Nauk SSSR Ser. Mat., 50:4 (1986),  866–873  mathnet  mathscinet  zmath; Math. USSR-Izv., 29:1 (1987), 225–232 10
1985
8. S. M. Ivashkovich, “Biholomorphic classification of the tubular tori in $\mathbb{C}^2$”, Funktsional. Anal. i Prilozhen., 19:3 (1985),  69–70  mathnet  mathscinet  zmath; Funct. Anal. Appl., 19:3 (1985), 221–222  isi
9. S. M. Ivashkovich, “Extension of locally holomorphic mappings into a product of complex manifolds”, Izv. Akad. Nauk SSSR Ser. Mat., 49:4 (1985),  884–890  mathnet  mathscinet  zmath; Math. USSR-Izv., 27:1 (1986), 193–199 3
1983
10. S. M. Ivashkovich, “Extension of locally biholomorphic mappings of domains into complex projective space”, Izv. Akad. Nauk SSSR Ser. Mat., 47:1 (1983),  197–206  mathnet  mathscinet  zmath; Math. USSR-Izv., 22:1 (1984), 181–189 7
1982
11. A. G. Vitushkin, S. M. Ivashkovich, “On the extension of holomorphic mappings of a real analytic hypersurface into complex projective space”, Dokl. Akad. Nauk SSSR, 267:4 (1982),  779–780  mathnet  mathscinet  zmath 2
1981
12. S. M. Ivashkovich, “Envelopes of holomorphy of some tube sets in $\mathbf C^2$ and the monodromy theorem”, Izv. Akad. Nauk SSSR Ser. Mat., 45:4 (1981),  896–904  mathnet  mathscinet  zmath; Math. USSR-Izv., 19:1 (1982), 189–196 1

Presentations in Math-Net.Ru
1. Banach analytic sets and a non-linear version of the Levi extension theorem
Sergey Ivashkovich
Russian–German conference on Several Complex Variables
February 29, 2012 10:00   

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024