|
|
Publications in Math-Net.Ru |
Citations |
|
1996 |
1. |
V. A. Oskolkov, L. I. Kalinichenko, “Growth of entire functions represented by Dirichlet series”, Mat. Sb., 187:10 (1996), 129–144 ; Sb. Math., 187:10 (1996), 1545–1560 |
1
|
|
1994 |
2. |
V. A. Oskolkov, “The Hardy–Littlewood problem for regular and uniformly distributed number sequences”, Izv. RAN. Ser. Mat., 58:2 (1994), 153–166 ; Russian Acad. Sci. Izv. Math., 44:2 (1995), 359–371 |
1
|
|
1993 |
3. |
V. A. Oskolkov, “On the basis property of certain polynomial systems in spaces of entire functions of exponential type”, Izv. RAN. Ser. Mat., 57:3 (1993), 179–191 ; Russian Acad. Sci. Izv. Math., 42:3 (1994), 587–599 |
1
|
4. |
V. A. Oskolkov, “On some questions in the theory of entire functions”, Mat. Sb., 184:1 (1993), 129–148 ; Russian Acad. Sci. Sb. Math., 78:1 (1994), 113–129 |
9
|
|
1990 |
5. |
V. A. Oskolkov, “Hardy–Littlewood problems on the uniform distribution of arithmetic progressions”, Izv. Akad. Nauk SSSR Ser. Mat., 54:1 (1990), 159–172 ; Math. USSR-Izv., 36:1 (1991), 169–182 |
4
|
6. |
V. A. Oskolkov, “Criterion for quasi-power basis and its applications”, Mat. Zametki, 48:6 (1990), 72–78 ; Math. Notes, 48:6 (1990), 1221–1226 |
1
|
|
1989 |
7. |
V. A. Oskolkov, “On the completeness and quasipower basis property of systems $\{z^nf(\lambda_nz)\}$”, Mat. Sb., 180:3 (1989), 375–384 ; Math. USSR-Sb., 66:2 (1990), 383–392 |
2
|
|
1981 |
8. |
V. A. Oskolkov, “Necessary and sufficient conditions for quasipower basicity of certain systems of regular functions”, Mat. Zametki, 29:2 (1981), 235–242 ; Math. Notes, 29:2 (1981), 121–125 |
|
1979 |
9. |
V. A. Oskolkov, “Basicity of certain systems of functions”, Mat. Zametki, 26:3 (1979), 389–398 ; Math. Notes, 26:3 (1979), 687–692 |
|
1978 |
10. |
V. A. Oskolkov, “Some bases in spaces of regular functions and their application to interpolation”, Mat. Sb. (N.S.), 105(147):2 (1978), 238–260 ; Math. USSR-Sb., 34:2 (1978), 215–234 |
4
|
11. |
V. A. Oskolkov, S. A. Abdrashitova, “The growth of entire functions that are represented by Newton series. A theorem on whether a certain system of functions forms a basis”, Sibirsk. Mat. Zh., 19:1 (1978), 122–141 ; Siberian Math. J., 19:1 (1978), 86–100 |
|
1976 |
12. |
V. A. Oskolkov, “On the growth of entire functions represented by regularly convergent function series”, Mat. Sb. (N.S.), 100(142):2(6) (1976), 312–334 ; Math. USSR-Sb., 29:2 (1976), 281–302 |
1
|
|
1975 |
13. |
V. A. Oskolkov, “A method for estimating interpolating polynomials”, Mat. Zametki, 17:4 (1975), 555–561 ; Math. Notes, 14:4 (1975), 327–331 |
1
|
14. |
V. A. Oskolkov, “The Abel–Goncharov problem for entire functions of infinite order”, Sibirsk. Mat. Zh., 16:1 (1975), 75–85 ; Siberian Math. J., 16:1 (1975), 59–67 |
2
|
|
1973 |
15. |
V. A. Oskolkov, “On estimates for Goncharov polynomials”, Mat. Sb. (N.S.), 92(134):1(9) (1973), 55–59 ; Math. USSR-Sb., 21:1 (1973), 57–62 |
3
|
|
Organisations |
|
|
|
|