Full list of publications: |
|
|
Citations (Crossref Cited-By Service + Math-Net.Ru) |
|
|
2023 |
1. |
Alexander A. Kilin, Elena N. Pivovarova, “Dynamics of an Unbalanced Disk
with a Single Nonholonomic Constraint”, Regul. Chaotic Dyn., 28:1 (2023), 78–106 ;
|
4
[x]
|
2. |
Alexander A. Kilin, Tatiana B. Ivanova, Elena N. Pivovarova, “Stabilization of Steady Rotations of a Spherical Robot on a Vibrating Base Using Feedback”, Regul. Chaotic Dyn., 28:6 (2023), 888–905 ;
|
1
[x]
|
|
2021 |
3. |
Alexander A. Kilin, Elena N. Pivovarova, “A Particular Integrable Case in the Nonautonomous Problem
of a Chaplygin Sphere Rolling on a Vibrating Plane”, Regul. Chaotic Dyn., 26:6 (2021), 775–786 ;
|
4
[x]
|
|
2020 |
4. |
Alexander A. Kilin, Elena N. Pivovarova, “Stability and Stabilization of Steady Rotations of a Spherical Robot on a Vibrating Base”, Regul. Chaotic Dyn., 25:6 (2020), 729–752 ;
|
13
[x]
|
5. |
A. A. Kilin, E. N. Pivovarova, “Nonintegrability of the problem of a spherical top rolling on a vibrating plane”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:4 (2020), 628–644 |
|
2019 |
6. |
Tatyana B. Ivanova, Alexander A. Kilin, Elena N. Pivovarova, “Controlled Motion of a Spherical Robot with Feedback. II”, J. Dyn. Control Syst., 25:1 (2019), 1–16
|
8
[x]
|
7. |
Alexander A. Kilin, Elena N. Pivovarova, “Qualitative Analysis of the Nonholonomic Rolling of a Rubber Wheel with Sharp Edges”, Regul. Chaotic Dyn., 24:2 (2019), 212–233
|
4
[x]
|
8. |
A. V. Borisov, A. A. Kilin, E. N. Pivovarova, “Speedup of a Chaplygin top by means of rotors”, Dokl. Akad. Nauk, 485:3 (2019), 285–289 |
|
2018 |
9. |
Tatyana B. Ivanova, Alexander A. Kilin, Elena N. Pivovarova, “Controlled motion of a cpherical robot with feedback. I”, J. Dyn. Control Syst., 24:3 (2018), 497–510
|
22
[x]
|
10. |
Alexander A. Kilin, Elena N. Pivovarova, “Integrable Nonsmooth Nonholonomic Dynamics of a Rubber Wheel with Sharp Edges”, Regul. Chaotic Dyn., 23:7 (2018), 887–907
|
4
[x]
|
11. |
T. B. Ivanova, A. A. Kilin, E. N. Pivovarova, “Control of the Rolling Motion of a Spherical Robot on an Inclined Plane”, Doklady Physics, 63:10 (2018), 435–440 |
12. |
A. A. Kilin, E. N. Pivovarova, T. B. Ivanova, “Controlled Motion of a Spherical Robot of Pendulum Type on an Inclined Plane”, Dokl. Math., 63:7 (2018), 302–306 |
|
2016 |
13. |
A. V. Borisov, A. O. Kazakov, E. N. Pivovarova, “Regular and chaotic dynamics in the rubber model of a Chaplygin top”, Regular and Chaotic Dynamics, 21:7-8 (2016), 885–901 |
|
2017 |
14. |
Alexander A. Kilin, Elena N. Pivovarova, “The Rolling Motion of a Truncated Ball Without Slipping and Spinning on a Plane”, Regul. Chaotic Dyn., 22:3 (2017), 298–317
|
11
[x]
|
15. |
E. N. Pivovarova, “Stability analysis of steady motions of a spherical robot of combined type”, Nelin. Dinam., 13:4 (2017), 611–623 |
|
2015 |
16. |
Alexander A. Kilin, Elena N. Pivovarova, Tatyana B. Ivanova, “Spherical Robot of Combined Type: Dynamics and Control”, Regul. Chaotic Dyn., 20:6 (2015), 716–728
|
51
[x]
|
17. |
E. N. Pivovarova, A. V. Klekovkin, “Influence of rolling friction on the controlled motion of a robot wheel”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 25:4 (2015), 583–592 |
18. |
E. V. Vetchanin, Yu. L. Karavaev, A. A. Kalinkin, A. V. Klekovkin, E. N. Pivovarova, “A model of a screwless underwater robot”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 25:4 (2015), 544–553 |
|
2014 |
19. |
Tatyana B. Ivanova, Elena N. Pivovarova, “Comment on the paper by A. V. Borisov, A. A. Kilin, I. S. Mamaev “How to control the Chaplygin ball using rotors. II””, Nelin. Dinam., 10:1 (2014), 127–132 |
20. |
Tatiana B. Ivanova, Elena N. Pivovarova, “Comments on the Paper by A.V. Borisov, A.A. Kilin, I.S. Mamaev “How to Control the Chaplygin Ball Using Rotors. II””, Regul. Chaotic Dyn., 19:1 (2014), 140–143
|
16
[x]
|
|
2013 |
21. |
Tatyana B. Ivanova, Elena N. Pivovarova, “Dynamics and control of a spherical robot with an axisymmetric pendulum actuator”, Nelin. Dinam., 9:3 (2013), 507–520 |
|
2012 |
22. |
E. N. Pivovarova, T. B. Ivanova, “Stability analysis of periodic solutions in the problem of the rolling of a ball with a pendulum”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2012, no. 4, 146–155 |
|