|
|
Publications in Math-Net.Ru |
Citations |
|
2023 |
1. |
N. A. Gureeva, R. Z. Kiseleva, Yu. V. Klochkov, A. P. Nikolaev, V. V. Ryabukha, “On the physical equations of a deformable body at the loading step with implementation based on a mixed FEM”, Izv. Saratov Univ. Math. Mech. Inform., 23:1 (2023), 70–82 |
1
|
|
2022 |
2. |
N. A. Gureeva, R. Z. Kiseleva, Yu. V. Klochkov, A. P. Nikolaev, “On the approximation of class $C^{(0)}$ components of physical quantities in curved coordinate systems”, Izv. Saratov Univ. Math. Mech. Inform., 22:2 (2022), 142–151 |
3. |
A. Sh. Dzhabrailov, A. P. Nikolaev, Yu. V. Klochkov, N. A. Gureeva, T. R. Ishchanov, “Nonlinear deformation of axisymmetrically loaded rotation shell based on FEM with different variants of definitional equations”, Izv. Saratov Univ. Math. Mech. Inform., 22:1 (2022), 48–61 |
|
2020 |
4. |
N. A. Gureeva, Yu. V. Klochkov, A. P. Nikolaev, M. Yu. Klochkov, “Continuos parameterization of the median surface of an ellipsoidal shell and its geometric parameters”, Mathematical Physics and Computer Simulation, 23:1 (2020), 5–12 |
|
2015 |
5. |
N. A. Gureeva, Yu. V. Klotchkov, A. P. Nikolaev, “The defining relations for nonlinear elastic bodies and their implementation in the calculation of the rotation shells subjected to axisymmetric loading based on the mixed FEM”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 157:2 (2015), 28–39 |
|
2012 |
6. |
N. A. Gureeva, “Calculation plainly loaded geometrically nonlinear designs on the basis of mixed FEM with tenzorno-vector approximation requires sizes”, Izv. Saratov Univ. Math. Mech. Inform., 12:3 (2012), 56–62 |
7. |
N. G. Bandurin, N. A. Gureeva, “Software package for the numerical solution of systems of essentially nonlinear ordinary integro-differential-algebraic equations”, Matem. Mod., 24:2 (2012), 3–16 ; Math. Models Comput. Simul., 4:5 (2012), 455–463 |
4
|
|
Organisations |
|
|
|
|