Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Perevaryukha, Andrei Yur'evich

Statistics Math-Net.Ru
Total publications: 32
Scientific articles: 32
Presentations: 1

Number of views:
This page:5747
Abstract pages:11735
Full texts:6616
References:2195
Senior Researcher
Candidate of technical sciences
Speciality: 05.13.18 (Mathematical modelling, calculating methods, and the program systems)
E-mail: ,

https://www.mathnet.ru/eng/person59550
List of publications on Google Scholar
https://zbmath.org/authors/ai:perevaryukha.a-yu
https://elibrary.ru/author_items.asp?authorid=498537
https://orcid.org/0000-0002-1049-0096
https://www.scopus.com/authid/detail.url?authorId=43861701500
https://www.researchgate.net/profile/Andrey_Perevarukha

Publications in Math-Net.Ru Citations
2024
1. A. Yu. Perevaryukha, “Phenomenological models of three scenarios of local coronavirus epidemics”, Matem. Mod., 36:1 (2024),  105–130  mathnet; Math. Models Comput. Simul., 16:3 (2024), 396–411
2022
2. A. Yu. Perevaryukha, “Models of population process with delay and the scenario for adaptive resistance to invasion”, Computer Research and Modeling, 14:1 (2022),  147–161  mathnet 1
3. A. Yu. Perevaryukha, “Modeling of adaptive counteraction of the induced biotic environment during the invasive process”, Izvestiya VUZ. Applied Nonlinear Dynamics, 30:4 (2022),  436–455  mathnet 1
4. A. Y. Perevaryukha, “Scenario modeling of the king crab stock collapse under expert control of annual catch”, Matem. Mod., 34:4 (2022),  23–42  mathnet; Math. Models Comput. Simul., 14:6 (2022), 889–899
5. A. Perevaryukha, “Dynamic model of population invasion with depression effect”, Informatics and Automation, 21:3 (2022),  604–623  mathnet 1
6. A. Yu. Perevaryukha, “Scenario of the invasive process in the modification of Bazykins population equation with delayed regulation and high reproductive potential”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 39:2 (2022),  91–102  mathnet  mathscinet
2021
7. A. Yu. Perevaryukha, “Scenarios model of the effect of a temporary sharp reduction of population with a large reproductive parameter”, Vestnik SamU. Estestvenno-Nauchnaya Ser., 27:2 (2021),  80–90  mathnet
2020
8. A. Yu. Perevaryukha, “Modeling of oscillating population dynamics of aquatic organisms in the «resource-consumer» system using cellular automata”, Izvestiya VUZ. Applied Nonlinear Dynamics, 28:1 (2020),  62–76  mathnet  elib
9. A. Yu. Perevaryukha, “Modelling of spatial spreading of invasions in the discrete homogeneous environment”, Mathematical Physics and Computer Simulation, 23:1 (2020),  44–67  mathnet
2019
10. A. Yu. Perevaryukha, V. A. Dubrovskaya, “Models of specific forms of insect outbreaks in modifications of Bazykin and Verhulst–Pearl equations”, Taurida Journal of Computer Science Theory and Mathematics, 2019, no. 2,  26–38  mathnet  elib
11. A. Yu. Perevarukha, “Scenarios of critical outbreak of invasive species in new modification of Gompertz equation”, Vladikavkaz. Mat. Zh., 21:1 (2019),  51–61  mathnet
12. A. Yu. Perevaryukha, “Modeling the growth rates of alien insects specified differentiated by stages of ontogenesis”, Vestnik SamU. Estestvenno-Nauchnaya Ser., 25:2 (2019),  100–109  mathnet 1
13. A. Yu. Perevaryukha, “Oscillation and extinction scenarios in the new continuous model of the eruptive phase of alien species invasion”, Mathematical Physics and Computer Simulation, 22:1 (2019),  54–70  mathnet 2
2018
14. A. Yu. Perevaryukha, “Scenarios of the passage of the «population bottleneck» by an invasive species in the new model of population dynamics”, Izvestiya VUZ. Applied Nonlinear Dynamics, 26:5 (2018),  63–80  mathnet  elib 1
15. A. Yu. Perevaryukha, “Phenomenological computational models for passing outbreaks of insects with its bifurcation completion”, Matem. Mod., 30:1 (2018),  40–54  mathnet  elib; Math. Models Comput. Simul., 10:4 (2018), 501–511  scopus 2
16. A. Yu. Perevaryukha, “Simulation of fluctuations of aggressive alien species in continuous models with independent regulation”, Vestnik SamU. Estestvenno-Nauchnaya Ser., 24:4 (2018),  48–58  mathnet  elib 3
2017
17. A. Yu. Perevaryukha, “Transition from relaxation oscillations to pseudoperiodic trajectory in the new model of population dynamics”, Izvestiya VUZ. Applied Nonlinear Dynamics, 25:2 (2017),  51–62  mathnet
18. A. Yu. Perevarukha, “Scenario of involuntary destruction of a population in a modified Hutchinson equation”, Vladikavkaz. Mat. Zh., 19:4 (2017),  58–69  mathnet 1
19. A. Yu. Perevaryukha, “Destruction of the relaxation oscillations in the model of extreme dynamics of the population”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2017, no. 1(38),  55–65  mathnet 2
2016
20. A. Yu. Perevaryukha, “Development of the dynamic model of reproduction of sturgeon fish from the structural analysis of ecosystem processes”, Izv. IMI UdGU, 2016, no. 1(47),  34–43  mathnet  elib
21. A. Yu. Perevaryukha, “Nonlinear model of overfishing for the Volga sturgeon based on cognitive graph of interaction of environmental factors”, Vestnik SamU. Estestvenno-Nauchnaya Ser., 2016, no. 1-2,  92–106  mathnet  elib 3
2015
22. A. Yu. Perevaryukha, “Structural and dynamic simulation of the interaction between the components of aquatic ecosystems under anthropogenic impact”, Izv. IMI UdGU, 2015, no. 2(46),  132–139  mathnet  elib 1
23. A. Yu. Perevaryukha, “Graph model of interaction of anthropogenic and biotic factors for the productivity of the Caspian Sea”, Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2015, no. 10(132),  181–198  mathnet  elib 4
2014
24. A. Yu. Perevaryukha, “Discrete-continuous Model for the Problem of Analysis Critical Level of Exploitation of Bioresources”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(34) (2014),  145–155  mathnet  zmath  elib
2013
25. A. Yu. Perevarukha, “On the determination of fractal objects in the dynamics of bioresources management models”, Tr. SPIIRAN, 24 (2013),  211–221  mathnet
2012
26. A. U. Perevarukha, “The cyclic and unstable chaotic dynamics in models of two populations of sturgeon fish”, Sib. Zh. Vychisl. Mat., 15:3 (2012),  307–320  mathnet  elib; Num. Anal. Appl., 5:3 (2012), 254–264  scopus 9
27. A. Yu. Perevarukha, “Creation of locally disconnected basin boundary of attractors in population dynamics model”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2012, no. 3,  59–69  mathnet
2011
28. A. Yu. Perevarukha, “Simulation of population changes based on the the numerical solution of bursting ordinary differential equations”, Zhurnal SVMO, 13:3 (2011),  101–106  mathnet
29. A. Yu. Perevarukha, “Nonlinear phenomena and transient modes in the dynamics of new bioresources control models”, Tr. SPIIRAN, 16 (2011),  243–255  mathnet 2
2010
30. A. Yu. Perevarukha, “Transition to robust chaotic mode as a result of single bifurcation in the new model of population dynamic”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2010, no. 2,  117–126  mathnet 2
2009
31. A. Yu. Perevaryukha, “Nonattracting chaotic set in new model of biological system with delaying argument”, Informatsionnye Tekhnologii i Vychslitel'nye Sistemy, 2009, no. 2,  13–22  mathnet  elib
2008
32. A. Yu. Perevarukha, “Cyclical fluctuations and step-wise changes in new models of population dynamic”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2008, no. 3,  116–125  mathnet 2

Presentations in Math-Net.Ru
1. Моделирование эпидемических волн на основе уравнений со стохастически возмущенным запаздыванием
A. Yu. Perevaryukha
9th International Conference on Stochastic Methods
June 4, 2024 11:15   

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024