Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Gritsenko, Svetlana Aleksandrovna

Statistics Math-Net.Ru
Total publications: 11
Scientific articles: 10

Number of views:
This page:688
Abstract pages:3078
Full texts:823
References:584
Associate professor
Candidate of physico-mathematical sciences
E-mail:
UDC: 517.958, 531.72, 539.3(4), 517.95
MSC: 76S05, 517.95
   
Main publications:
  • 1.Gritsenko, S. A., Homogenization in problems of nonlinear diffusion// Siberian electronic mathematical reports. - 2010. - T. 7. - S. 52--64. - http: //semr.math.nsc.ru/v7/p52-64.pdf
  • 2. Gerus, A. A., Gritsenko, S. A., Homogenization of a mathematical model of acoustics, Izv. Sarat. Univ. New. ser. Ser. Math. Mechanics. Informatics. 2015. T. 15, vol. 3. P. 264-272. DOI: 10.18500/1816-9791-2015-15-3-264-272
  • 3. The homogenized models of the isothermal acoustics in the configuration «fluid–poroelastic medium» AM Meirmanov, SA Gritsenko, AA Gerus Siberian electronic mathematical reports, 2016, 13, 49–74
  • 4. A. A. Gerus, S. A. Gritsenko, A. M. Meirmanov Derivation of an Averaged Model of Isothermal Acoustics in a Heterogeneous Medium in the Case of Two Different Poroelastic Domains (Journal of Applied and Industrial Mathematics). ISSN 1990-4789, Journal of Applied and Industrial Mathematics, 2016, Vol. 10, No. 2, pp. 1{10. °c Pleiades Publishing, Ltd., 2016. Original Russian Text °c A.A. Gerus, S.A. Gritsenko, A.M. Meirmanov, 2016, published in Sibir-skii Zhurnal Industrial'noi Matematiki, 2016, Vol. XIX, No. 2, pp. 37-46
  • 5. HOMOGENISATION OF THE ISOTHERMAL ACOUSTICS MODELS IN THE CONFIGURA-TION ELASTIC BODY – POROUS-ELASTIC MEDIUM A.M. Meirmanov, A.A. Gerus, S.A. Gritsenko, Mathematical Models and Computer Simulations, 2016, Vol. 28, No. 12, pp. 3-19

https://www.mathnet.ru/eng/person54417
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/234077

Publications in Math-Net.Ru Citations
2019
1. A. M. Meirmanov, O. V. Galtsev, S. A. Gritsenko, “On homogenized equations of filtration in two domains with common boundary”, Izv. RAN. Ser. Mat., 83:2 (2019),  142–173  mathnet  mathscinet  elib; Izv. Math., 83:2 (2019), 330–360  isi  scopus
2018
2. A. M. Meirmanov, S. A. Gritsenko, “Homogenization of the equations of filtration of a viscous fluid in two porous media”, Sibirsk. Mat. Zh., 59:5 (2018),  1145–1158  mathnet  elib; Siberian Math. J., 59:5 (2018), 909–921  isi  scopus
2016
3. A. M. Meirmanov, A. A. Gerus, S. A. Gritsenko, “Homogenisation of the isothermal acoustics models in the configuration elastic body–porous-elastic medium”, Matem. Mod., 28:12 (2016),  3–19  mathnet  elib
4. A. M. Meirmanov, S. A. Gritsenko, A. A. Gerus, “The homogenized models of the isothermal acoustics in the configuration «fluid–poroelastic medium»”, Sib. Èlektron. Mat. Izv., 13 (2016),  49–74  mathnet 1
5. A. A. Gerus, S. A. Gritsenko, A. M. Meirmanov, “The deduction of the homogenized model of isothermal acoustics in a heterogeneous medium in the case of two different poroelastic domains”, Sib. Zh. Ind. Mat., 19:2 (2016),  37–46  mathnet  mathscinet  elib; J. Appl. Industr. Math., 10:2 (2016), 199–208  scopus
2015
6. A. A. Gerus, S. A. Gritsenko, “Homogenization of the acoustics mathematical model”, Izv. Saratov Univ. Math. Mech. Inform., 15:3 (2015),  264–272  mathnet  elib
2010
7. S. A. Gritsenko, “The global solvability of the problem of nonlinear diffusion and slow convection in slightly compressible viscous fluid”, Izv. Saratov Univ. Math. Mech. Inform., 10:4 (2010),  35–41  mathnet
8. S. A. Gritsenko, “Homogenization in the problems of nonlinear diffusion”, Sib. Èlektron. Mat. Izv., 7 (2010),  52–64  mathnet  mathscinet
9. A. M. Meirmanov, S. A. Gritsenko, “Derivation of the equations of diffusion and convection of an admixture”, Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2010, no. 18,  73–86  mathnet  elib
2009
10. S. A. Gritsenko, “On the diffusion and slow convection in slightly compressible viscous fluid”, Izv. Saratov Univ. Math. Mech. Inform., 9:2 (2009),  19–24  mathnet 1

2010
11. S. A. Gritsenko, “Erratum to “Homogenization in the problems of nonlinear diffusion””, Sib. Èlektron. Mat. Izv., 7 (2010),  465–466  mathnet

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024