1.Gritsenko, S. A., Homogenization in problems of nonlinear diffusion// Siberian electronic mathematical reports. - 2010. - T. 7. - S. 52--64. -
http: //semr.math.nsc.ru/v7/p52-64.pdf
2. Gerus, A. A., Gritsenko, S. A., Homogenization of a mathematical model of acoustics, Izv. Sarat. Univ. New. ser. Ser. Math. Mechanics. Informatics. 2015. T. 15, vol. 3. P. 264-272. DOI: 10.18500/1816-9791-2015-15-3-264-272
3. The homogenized models of the isothermal acoustics in the configuration «fluid–poroelastic medium»
AM Meirmanov, SA Gritsenko, AA Gerus Siberian electronic mathematical reports, 2016, 13, 49–74
4. A. A. Gerus, S. A. Gritsenko, A. M. Meirmanov Derivation of an Averaged Model of Isothermal Acoustics in a Heterogeneous Medium in the Case of Two Different Poroelastic Domains
(Journal of Applied and Industrial Mathematics).
ISSN 1990-4789, Journal of Applied and Industrial Mathematics, 2016, Vol. 10, No. 2, pp. 1{10. °c Pleiades Publishing, Ltd., 2016.
Original Russian Text °c A.A. Gerus, S.A. Gritsenko, A.M. Meirmanov, 2016, published in Sibir-skii Zhurnal Industrial'noi Matematiki, 2016, Vol. XIX, No. 2, pp. 37-46
5. HOMOGENISATION OF THE ISOTHERMAL ACOUSTICS MODELS IN THE CONFIGURA-TION ELASTIC BODY – POROUS-ELASTIC MEDIUM
A.M. Meirmanov, A.A. Gerus, S.A. Gritsenko, Mathematical Models and Computer Simulations, 2016, Vol. 28, No. 12, pp. 3-19
A. M. Meirmanov, O. V. Galtsev, S. A. Gritsenko, “On homogenized equations of filtration in two domains with common boundary”, Izv. RAN. Ser. Mat., 83:2 (2019), 142–173; Izv. Math., 83:2 (2019), 330–360
2018
2.
A. M. Meirmanov, S. A. Gritsenko, “Homogenization of the equations of filtration of a viscous fluid in two porous media”, Sibirsk. Mat. Zh., 59:5 (2018), 1145–1158; Siberian Math. J., 59:5 (2018), 909–921
2016
3.
A. M. Meirmanov, A. A. Gerus, S. A. Gritsenko, “Homogenisation of the isothermal acoustics models in the configuration elastic body–porous-elastic medium”, Matem. Mod., 28:12 (2016), 3–19
4.
A. M. Meirmanov, S. A. Gritsenko, A. A. Gerus, “The homogenized models of the isothermal acoustics in the configuration «fluid–poroelastic medium»”, Sib. Èlektron. Mat. Izv., 13 (2016), 49–74
A. A. Gerus, S. A. Gritsenko, A. M. Meirmanov, “The deduction of the homogenized model of isothermal acoustics in a heterogeneous medium in the case of two different poroelastic domains”, Sib. Zh. Ind. Mat., 19:2 (2016), 37–46; J. Appl. Industr. Math., 10:2 (2016), 199–208
2015
6.
A. A. Gerus, S. A. Gritsenko, “Homogenization of the acoustics mathematical model”, Izv. Saratov Univ. Math. Mech. Inform., 15:3 (2015), 264–272
2010
7.
S. A. Gritsenko, “The global solvability of the problem of nonlinear diffusion and slow convection in slightly compressible viscous fluid”, Izv. Saratov Univ. Math. Mech. Inform., 10:4 (2010), 35–41
8.
S. A. Gritsenko, “Homogenization in the problems of nonlinear diffusion”, Sib. Èlektron. Mat. Izv., 7 (2010), 52–64
9.
A. M. Meirmanov, S. A. Gritsenko, “Derivation of the equations of diffusion and convection of an admixture”, Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2010, no. 18, 73–86
2009
10.
S. A. Gritsenko, “On the diffusion and slow convection in slightly compressible viscous fluid”, Izv. Saratov Univ. Math. Mech. Inform., 9:2 (2009), 19–24