|
|
Publications in Math-Net.Ru |
Citations |
|
2019 |
1. |
K. A. Zhukov, A. A. Kornev, M. A. Lozhnikov, A. V. Popov, “Acceleration of transition to stationary mode for solutions to a system of viscous gas dynamics”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2019, no. 2, 14–21 ; Moscow University Mathematics Bulletin, 74:2 (2019), 55–61 |
1
|
|
2018 |
2. |
K. A. Zhukov, A. A. Kornev, A. V. Popov, “Acceleration of the process of entering stationary mode for molutions of a linearized system of viscous gas dynamics. II”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2018, no. 3, 3–8 ; Moscow University Mathematics Bulletin, 73:3 (2018), 85–89 |
2
|
3. |
K. A. Zhukov, A. A. Kornev, A. V. Popov, “Acceleration of transition to stationary state for solutions to a linearized viscous gas dynamics system. I”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2018, no. 1, 26–32 ; Moscow University Mathematics Bulletin, 73:1 (2018), 24–29 |
4
|
|
2014 |
4. |
K. A. Zhukov, A. V. Popov, “A projection-difference scheme for the unsteady motion of a viscous barotropic gas”, Num. Meth. Prog., 15:4 (2014), 602–609 |
|
2013 |
5. |
A. V. Popov, K. A. Zhukov, “An implicit finite-difference scheme for the unsteady motion of a viscous barotropic gas”, Num. Meth. Prog., 14:4 (2013), 516–523 |
1
|
|
2012 |
6. |
K. A. Zhukov, A. V. Popov, “Finite-difference and projection-difference schemes for the unsteady motion of a viscous weakly compressible gas”, Num. Meth. Prog., 13:1 (2012), 67–73 |
|
2006 |
7. |
K. A. Zhukov, “A Galerkin approximation for the problem of unsteady motion of a viscous weakly compressible gas”, Num. Meth. Prog., 7:1 (2006), 47–49 |
|
2005 |
8. |
K. A. Zhukov, A. V. Popov, “Investigation of an economical finite difference scheme for an unsteady viscous weakly compressible gas flow”, Zh. Vychisl. Mat. Mat. Fiz., 45:4 (2005), 701–717 ; Comput. Math. Math. Phys., 45:4 (2005), 677–693 |
5
|
|
Organisations |
|
|
|
|