Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Ibragimova, Liliya Sunagatovna

Statistics Math-Net.Ru
Total publications: 11
Scientific articles: 11

Number of views:
This page:508
Abstract pages:3247
Full texts:1376
References:430
Candidate of physico-mathematical sciences
E-mail:

https://www.mathnet.ru/eng/person51778
List of publications on Google Scholar
https://zbmath.org/authors/ai:ibragimova.l-s
https://mathscinet.ams.org/mathscinet/MRAuthorID/812927

Publications in Math-Net.Ru Citations
2022
1. M. G. Yumagulov, L. S. Ibragimova, A. S. Belova, “Investigation of the problem on a parametric resonance in Lurie systems with weakly oscillating coefficients”, Avtomat. i Telemekh., 2022, no. 2,  107–121  mathnet; Autom. Remote Control, 83:2 (2022), 252–263 3
2021
2. M. G. Yumagulov, L. S. Ibragimova, A. S. Belova, “Perturbation theory methods in problem of parametric resonance for linear periodic Hamiltonian systems”, Ufimsk. Mat. Zh., 13:3 (2021),  178–195  mathnet; Ufa Math. J., 13:3 (2021), 174–190  isi  scopus 2
2019
3. M. G. Yumagulov, L. S. Ibragimova, A. S. Belova, “Methods for studying the stability of linear periodic systems depending on a small parameter”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 163 (2019),  113–126  mathnet  mathscinet 2
2017
4. M. G. Yumagulov, I. Zh. Mustafina, L. S. Ibragimova, “A study of the boundaries of stability regions in two-parameter dynamical systems”, Avtomat. i Telemekh., 2017, no. 10,  74–89  mathnet  elib; Autom. Remote Control, 78:10 (2017), 1790–1802  isi  scopus 1
5. M. G. Yumagulov, L. S. Ibragimova, I. Zh. Mustafina, “Boundaries of stability domains for equilibrium points of differential equations with parameters”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 132 (2017),  161–164  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 230:5 (2018), 818–821  scopus
6. L. S. Ibragimova, M. G. Yumagulov, A. R. Ishbirdin, M. M. Ishmuratova, “Mathematical modeling of dynamics of the number of specimens in a biological population under changing external conditions on the example of the Burzyan wild-hive honeybee (Apismellifera L., 1758)”, Mat. Biolog. Bioinform., 12:1 (2017),  224–236  mathnet 1
2016
7. L. S. Ibragimova, I. Zh. Mustafina, M. G. Yumagulov, “The asymptotic formulae in the problem on constructing hyperbolicity and stability regions of dynamical systems”, Ufimsk. Mat. Zh., 8:3 (2016),  59–81  mathnet  mathscinet  elib; Ufa Math. J., 8:3 (2016), 58–78  isi 6
2010
8. A. A. Vyshinskiy, L. S. Ibragimova, S. A. Murtazina, M. G. Yumagulov, “An operator method for approximate investigation of a regular bifurcation in multiparameter dynamical systems”, Ufimsk. Mat. Zh., 2:4 (2010),  3–26  mathnet  zmath 17
2008
9. M. G. Yumagulov, L. S. Ibragimova, S. M. Muzafarov, I. D. Nurov, “The Andronov–Hopf bifurcation with weakly oscillating parameters”, Avtomat. i Telemekh., 2008, no. 1,  39–44  mathnet  mathscinet  zmath; Autom. Remote Control, 69:1 (2008), 36–41  isi  scopus 1
2007
10. L. S. Ibragimova, M. G. Yumagulov, “Parameter functionalization and its application to the problem of local bifurcations in dynamic systems”, Avtomat. i Telemekh., 2007, no. 4,  3–12  mathnet  mathscinet  zmath; Autom. Remote Control, 68:4 (2007), 573–582  scopus 8
2005
11. L. S. Ibragimova, “Точки бифуркации вынужденных колебаний”, Matem. Mod. Kraev. Zadachi, 3 (2005),  107–110  mathnet

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024