Full list of publications: |
|
|
Citations (Crossref Cited-By Service + Math-Net.Ru) |
|
|
2023 |
1. |
A. A. Galt, A. M. Staroletov, “On splitting of normalizers of maximal tori in finite groups of Lie type”, Algebra Logika, 62:1 (2023), 33–58 |
2. |
N. Yang, I. Gorshkov, A. Staroletov, A. V. Vasil'ev, “On recognition of direct powers of finite simple linear groups by spectrum”, Ann. Mat. Pura Appl. (4), 202:6 (2023), 2699–2714 , arXiv: 2210.13759v2 |
3. |
N. V. Maslova, V. V. Panshin, A. M. Staroletov, “On characterization by Gruenberg–Kegel graph of finite simple exceptional groups of Lie type”, Eur. J. Math., 9:3 (2023), 78 , arXiv: 2301.13762
|
1
[x]
|
|
2022 |
4. |
A. A. Gal't, A. M. Staroletov, “Minimal supplements of maximal tori in their normalizers for the groups $F_4(q)$”, Izv. Math., 86:1 (2022), 126–149 |
|
2021 |
5. |
A. M. Staroletov, Siberian Math. J., 62:2 (2021), 341–356 |
6. |
A. A. Galt, A. M. Staroletov, Mat. Tr., 24:1 (2021), 52–101 |
7. |
N. Yang, A. Staroletov, “The minimal polynomials of powers of cycles in the ordinary representations of symmetric and alternating groups”, Journal of Algebra and Its Applications, 20:11 (2021), 2150209 , arXiv: 1911.06049
|
1
[x]
|
8. |
A. Galt, V. Joshi, A. Mamontov, S. Shpectorov, A. Staroletov, “Double axes and subalgebras of Monster type in Matsuo algebras”, Communications in Algebra, 49:10 (2021), 4208–4248 , arXiv: 2004.11180
|
8
[x]
|
9. |
A. P. Khramova, N. V. Maslova, V. V. Panshin, A. M. Staroletov, “Characterization of groups $E_6(3)$ and ${^2}E_6(3)$ by Gruenberg–Kegel graph”, Sib. elektron. matem. izv., 18:2 (2021), 1651–1656 ;
|
1
[x]
|
|
2020 |
10. |
I. Gorshkov, A. Staroletov, “On primitive 3-generated axial algebras of Jordan type”, Journal of Algebra, 563 (2020), 74–99 , arXiv: 2005.13791
|
4
[x]
|
|
2019 |
11. |
A. Mamontov, A. Staroletov, M. Whybrow, “Minimal 3-generated Majorana algebras”, Journal of Algebra, 524 (2019), 367–394 , arXiv: 1809.03184
|
2
[x]
|
12. |
A. Galt, A. Staroletov, “On splitting of the normalizer of a maximal torus in $E_6(q)$”, Algebra Colloquium, 26:2 (2019), 329–350 , arXiv: 1806.02619
|
7
[x]
|
13. |
I. Gorshkov, A. Staroletov, “On groups having the prime graph as alternating and symmetric groups”, Communications in Algebra, 47:9 (2019), 3905–3914 , arXiv: 1804.00922
|
3
[x]
|
|
2017 |
14. |
A. M. Staroletov, “On recognition of alternating groups by prime graph”, Sib. elektron. matem. izv., 14 (2017), 994–1010
|
2
[x]
|
15. |
A. M. Staroletov, “On almost recognizability by spectrum of simple classical groups”, International Journal of Group Theory, 6:4 (2017), 7–33 |
|
2014 |
16. |
M. A. Grechkoseeva, A. M. Staroletov, “Unrecognizability by spectrum of finite simple orthogonal groups of dimension nine”, Sib. elektron. matem. izv., 11 (2014), 921–928
|
4
[x]
|
|
2015 |
17. |
A. V. Vasil'ev, A. M. Staroletov, “Almost recognizability by spectrum of simple exceptional groups of Lie type”, Algebra and Logic, 53:6 (2015), 433–449 |
|
2013 |
18. |
A. V. Vasil'ev, A. M. Staroletov, “Recognizability of groups $G_2(q)$ by spectrum”, Algebra and Logic, 52:1 (2013), 1–14 |
|
2012 |
19. |
A. M. Staroletov, “On recognition by spectrum of the simple groups $B_3(q)$, $C_3(q)$, and $D_4(q)$”, Siberian Math. J., 53:3 (2012), 532–538 |
|
2011 |
20. |
A. M. Staroletov, “Sporadic composition factors of finite groups isospectral to simple groups”, Sib. elektron. matem. izv., 8 (2011), 268–272
|
2
[x]
|
21. |
A. V. Vasil'ev, M. A. Grechkoseeva, A. M. Staroletov, “On finite groups isospectral to simple linear and unitary groups”, Siberian Math. J., 52:1 (2011), 30–40 |
|
2010 |
22. |
A. M. Staroletov, “Groups isospectral to the degree 10 alternating group”, Siberian Math. J., 51:3 (2010), 507–514 |
|
2009 |
23. |
A. V. Vasil'ev, I. B. Gorshkov, M. A. Grechkoseeva, A. S. Kondrat'ev, A. M. Staroletov, “On recognizability by spectrum of finite simple groups of types $B_n$, $C_n$, and ${}^2D_n$ for$n=2^k$”, Proc. Inst. Math. Mech., 267, suppl. 1 (2009), S218–S233 |
|
2008 |
24. |
A. M. Staroletov, “Insolubility of finite groups which are isospectral to the alternating group of degree $10$”, Sib. Èlektron. Mat. Izv., 5 (2008), 20–24 |
|