Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Cushman, Richard

Statistics Math-Net.Ru
Total publications: 7
Scientific articles: 3

Number of views:
This page:123
Abstract pages:727
References:37
Senior Researcher
Doctor of physico-mathematical sciences (1970)
Speciality: 01.01.00 (Mathematics)
E-mail:
Keywords: integrable systems, monodromy, quantum monodromy.

Subject:

Integrable Hamiltonian systems, nonholonomically constrained systems.

   
Main publications:
  1. R.H. Cushman and L.M. Bates, Global aspects of classical integrable systems, Birkhäuser, Basel, 1997  mathscinet  zmath
  2. R. Cushman, “Adjoint orbits in the odd symplectic group”, Regular and Chaotic Dynamics, 12:6 (2007), 746–755  crossref  mathscinet  adsnasa
  3. H.W. Broer, R. Cushman, F. Fasso, F. Takens, “Geometry of KAM tori for nearly integrable Hamiltonian systems”, Ergodic Theory and Dynamical Systems, 27:3 (2007), 725–741  crossref  mathscinet  zmath
  4. R. Cushman and W. van der Kallen, “Adjoint and coadjoint orbits of the Poincaré group”, Acta Appl. Math., 90:1-2 (2006), 65–89  crossref  mathscinet  zmath
  5. K. Efstathiou, R. Cushman, D.A. Sadovskii, “Fractional monodromy in the 1:(-2) resonance”, Advances in Mathematics, 209:1 (2007), 241–273  crossref  mathscinet  zmath

https://www.mathnet.ru/eng/person47654
List of publications on Google Scholar
List of publications on ZentralBlatt

Publications in Math-Net.Ru Citations
2016
1. Larry Bates, Richard Cushman, “A Generalization of Nekhoroshev’s Theorem”, Regul. Chaotic Dyn., 21:6 (2016),  639–642  mathnet  mathscinet  isi  scopus
2011
2. Richard Cushman, Larry Bates, “Applications of the odd symplectic group in Hamiltonian systems”, Regul. Chaotic Dyn., 16:1-2 (2011),  2–16  mathnet  mathscinet  zmath 1
2006
3. R. Cushman, J. Duistermaat, “Nearly flat falling motions of the rolling disk”, Regul. Chaotic Dyn., 11:1 (2006),  31–60  mathnet  mathscinet  zmath 7

2007
4. R. Cushman, “Adjoint Orbits of the Odd Real Symplectic Group”, Regul. Chaotic Dyn., 12:6 (2007),  746–755  mathnet  mathscinet  zmath 3
5. R.H. Cushman, H. R. Dullin, H.Hanßmann, S. Schmid, “The $1 : \pm 2$ Resonance”, Regul. Chaotic Dyn., 12:6 (2007),  642–663  mathnet  mathscinet  zmath 15
6. R. Cushman, J. Śniatycki, “Non-Holonomic Reduction of Symmetries, Constraints, and Integrability”, Regul. Chaotic Dyn., 12:6 (2007),  615–621  mathnet  mathscinet  zmath
2002
7. R. Cushman, J. Śniatycki, “Nonholonomic Reduction for Free and Proper Actions”, Regul. Chaotic Dyn., 7:1 (2002),  61–72  mathnet  mathscinet  zmath 8

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024