|
|
Publications in Math-Net.Ru |
Citations |
|
1985 |
1. |
A. D. Dzhavadyan, L. A. Oganesyan, “Choice of a grid depending on properties of the boundary in the variational-difference method of solution of elliptic equations”, Zh. Vychisl. Mat. Mat. Fiz., 25:9 (1985), 1353–1364 ; U.S.S.R. Comput. Math. Math. Phys., 25:5 (1985), 47–56 |
|
1977 |
2. |
Yu. R. Akopyan, L. A. Oganesyan, “A variational-difference method for solving two-dimensional linear parabolic equations”, Zh. Vychisl. Mat. Mat. Fiz., 17:1 (1977), 109–118 ; U.S.S.R. Comput. Math. Math. Phys., 17:1 (1977), 101–111 |
4
|
|
1975 |
3. |
S. V. Zundelevich, L. A. Oganesyan, “Variational-difference schemes on a regular network for the biharmonic equation”, Zh. Vychisl. Mat. Mat. Fiz., 15:2 (1975), 372–383 ; U.S.S.R. Comput. Math. Math. Phys., 15:2 (1975), 88–98 |
1
|
|
1974 |
4. |
M. E. Dmitrenko, L. A. Oganesyan, “The solution of elliptic equations with discontinuous coefficients on a regular mesh”, Zh. Vychisl. Mat. Mat. Fiz., 14:4 (1974), 906–918 ; U.S.S.R. Comput. Math. Math. Phys., 14:4 (1974), 85–97 |
1
|
|
1972 |
5. |
L. A. Oganesyan, “Singularities of solutions of Navier–Stokes equations at angular points”, Zap. Nauchn. Sem. LOMI, 27 (1972), 131–144 |
6. |
L. A. Oganesyan, “Variational-difference methods for solving the first boundary value problem for the biharmonic equation”, Zh. Vychisl. Mat. Mat. Fiz., 12:5 (1972), 1234–1244 ; U.S.S.R. Comput. Math. Math. Phys., 12:5 (1972), 187–199 |
1
|
|
1971 |
7. |
D. L. Laikhtman, B. A. Kagan, L. A. Oganesyan, R. V. Pyaskovskii, “On global circulation in barotropic ocean of variable depth”, Dokl. Akad. Nauk SSSR, 198:2 (1971), 333–336 |
8. |
L. A. Oganesyan, “A variational difference scheme on a regular network for the Dirichlet problem”, Zh. Vychisl. Mat. Mat. Fiz., 11:6 (1971), 1595–1603 ; U.S.S.R. Comput. Math. Math. Phys., 11:6 (1971), 304–315 |
|
1969 |
9. |
L. A. Oganesyan, L. A. Rukhovets, “Study of the rate of convergence of variational difference schemes for second-order elliptic equations in a two-dimensional field with a smooth boundary”, Zh. Vychisl. Mat. Mat. Fiz., 9:5 (1969), 1102–1120 ; U.S.S.R. Comput. Math. Math. Phys., 9:5 (1969), 158–183 |
32
|
|
1968 |
10. |
L. A. Oganesyan, L. A. Rukhovets, “Variational-difference schemes for second order linear elliptic equations in a two-dimensional region with a piecewise-smooth boundary”, Zh. Vychisl. Mat. Mat. Fiz., 8:1 (1968), 97–114 ; U.S.S.R. Comput. Math. Math. Phys., 8:1 (1968), 129–135 |
5
|
|
1966 |
11. |
L. A. Oganesyan, “Convergence of variational-difference schemes in the case of an improved approximation of the boundary”, Dokl. Akad. Nauk SSSR, 170:1 (1966), 41–44 |
12. |
L. A. Oganesyan, “Convergence of difference schemes in case of improved approximation of the boundary”, Zh. Vychisl. Mat. Mat. Fiz., 6:6 (1966), 1029–1042 ; U.S.S.R. Comput. Math. Math. Phys., 6:6 (1966), 116–134 |
1
|
|
1965 |
13. |
J. A. Gusman, L. A. Oganesyan, “Inequalities for the convergence of finite difference schemes for degenerate elliptic equations”, Zh. Vychisl. Mat. Mat. Fiz., 5:2 (1965), 351–357 ; U.S.S.R. Comput. Math. Math. Phys., 5:2 (1965), 256–267 |
8
|
|
|
|
1973 |
14. |
L. A. Oganesyan, “A remark on the article “A variational difference method for solving the first boundary value problem for the biharmonic equation on a regular network””, Zh. Vychisl. Mat. Mat. Fiz., 13:2 (1973), 520 ; U.S.S.R. Comput. Math. Math. Phys., 13:2 (1973), 330–331 |
|
Organisations |
|
|
|
|