01.01.02 (Differential equations, dynamical systems, and optimal control)
Birth date:
22.10.1984
E-mail:
Main publications:
A.E. Mamontov, D.A. Prokudin, “Global unique solvability of the initial-boundary value problem for the equations of one-dimensional polytropic flows of viscous compressible multifluids”, Journal of Mathematical Fluid Mechanics, 21:1 (2019), Article 9
A. E. Mamontov, D. A. Prokudin, “Razreshimost nestatsionarnykh uravnenii mnogokomponentnykh vyazkikh szhimaemykh zhidkostei”, Izv. RAN. Ser. matem., 82:1 (2018), 151–197
A. E. Mamontov, D. A. Prokudin, “Suschestvovanie slabykh reshenii zadachi o trekhmernykh statsionarnykh barotropnykh dvizheniyakh smesei vyazkikh szhimaemykh zhidkostei”, Sib. matem. zhurn., 58:1 (2017), 148–164
A. E. Mamontov, D. A. Prokudin, “Razreshimost statsionarnoi kraevoi zadachi dlya uravnenii dvizheniya odnotemperaturnoi smesi vyazkikh szhimaemykh teploprovodnykh zhidkostei”, Izv. RAN. Ser. matem., 78:3 (2014), 135–160
D. A. Prokudin, “On the stabilization of the solution to the initial boundary value problem for one-dimensional isothermal equations of viscous compressible multicomponent media dynamics”, Mathematics, 11:14 (2023), 3065 , 11 pp. https://www.mdpi.com/2227-7390/11/14/3065
A. E. Mamontov, D. A. Prokudin, “Stationary solutions of a boundary value problem for equations of barotropic flow of multicomponent media”, Sib. Èlektron. Mat. Izv., 20:2 (2023), 1490–1498
3.
A. E. Mamontov, D. A. Prokudin, “Existence of solutions of the boundary value problem for the equations of barotropic flows of a multicomponent medium. I. Statement of the main problem. Solvability of an auxiliary problem”, J. Appl. Industr. Math., 17:4 (2023), 802–814
2022
4.
A. E. Mamontov, D. A. Prokudin, “Stationary solutions of a boundary value problem for equations of barotropic flow of multicomponent media”, Sib. Èlektron. Mat. Izv., 19:2 (2022), 959–971
2021
5.
A. E. Mamontov, D. A. Prokudin, “Solubility of unsteady equations of the three-dimensional motion of two-component
viscous compressible heat-conducting fluids”, Izv. Math., 85:4 (2021), 755–812
6.
A. E. Mamontov, D. A. Prokudin, “Global unique solvability of an initial-boundary value problem for the one-dimensional barotropic equations of binary mixtures of viscous compressible fluids”, J. Appl. Industr. Math., 15:1 (2021), 50–61
7.
A. E. Mamontov, D. A. Prokudin, “Local solvability of an approximate problem for one-dimensional equations of dynamics of viscous compressible heat-conducting multifluids”, Sib. Èlektron. Mat. Izv., 18:2 (2021), 931–950
8.
D. A. Prokudin, “Existence of weak solutions to the problem on three-dimensional steady heat-conductive motions of compressible viscous multicomponent mixtures”, Siberian Math. J., 62:5 (2021), 895–907
9.
D. A. Prokudin, “On the stabilization of solutions to the initial-boundary value problem for the equations of dynamics of viscous compressible multicomponent media”, Sib. Èlektron. Mat. Izv., 18:2 (2021), 1278–1285
2020
10.
A. E. Mamontov, D. A. Prokudin, “Galerkin approximations in the problem of one-dimensional unsteady motion of a viscous compressible two-component fluid”, Sib. elektron. matem. izv., 17 (2020), 406–415;
11.
D. A. Prokudin, “Solvability of a regularized boundary-value problem for the system of equations of dynamics of mixtures of viscous compressible heat-conducting fluids”, Sib. elektron. matem. izv., 17 (2020), 300–312;
A. E. Mamontov, D. A. Prokudin, “Passage to the limit in the Galerkin approximations of the regularized problem of three-dimensional unsteady motion of a viscous compressible heat-conducting multifluid”, Sib. Èlektron. Mat. Izv., 17 (2020), 227–259
13.
A. E. Mamontov, D. A. Prokudin, “One–dimensional hemodynamics in vessels with elastic walls, multicomponent approach”, Journal of Physics: Conference Series, 1666 (2020), 012031 , 5 pp.
14.
A. E. Mamontov, D. A. Prokudin, “Global unique solvability of the initial–boundary value problem for onedimensional barotropic equations of viscous compressible bifluids”, Journal of Physics: Conference Series, 1666 (2020), 012032 , 6 pp.
A. E. Mamontov, D. A. Prokudin, “On the global unique solvability of a problem for one–dimensional equations of dynamics of mixtures of viscous compressible heatconducting fluids”, Journal of Physics: Conference Series, 1666 (2020), 012033 , 6 pp.
A. E. Mamontov, D. A. Prokudin, “One-dimensional multicomponent hemodynamics”, Sib. Èlektron. Mat. Izv., 17 (2020), 1975–1989
2019
17.
A. E. Mamontov, D. A. Prokudin, “Global estimates and solvability of the regularized problem of the three-dimensional unsteady motion of a viscous compressible heat-conductive multifluid”, Sib. Èlektron. Mat. Izv., 16 (2019), 547–590
18.
A. E. Mamontov, D. A. Prokudin, “Global unique solvability of the initial-boundary value problem for the equations of one-dimensional polytropic flows of viscous compressible multifluids”, Journal of Mathematical Fluid Mechanics, 21:1 (2019), 9 , 10 pp.
A. E. Mamontov, D. A. Prokudin, “Solvability of a problem for the equations of the dynamics of one–temperature mixtures of heat-conducting viscous compressible fluids”, Doklady Mathematics, 99:3 (2019), 273–276
20.
A. E. Mamontov, D. A. Prokudin, “Global solvability of the initial–boundary value problem for Navier–Stokes–Fourier type equations describing flows of viscous compressible heat–conducting multifluids”, Journal of Physics: Conference Series, 1268 (2019), 012061 , 7 pp.
2018
21.
A. E. Mamontov, D. A. Prokudin, “Solubility of unsteady equations of multi-component viscous compressible fluids”, Izv. Math., 82:1 (2018), 140–185
22.
A. E. Mamontov, D. A. Prokudin, “Unique solvability of initial-boundary value problem for one-dimensional equations of polytropic flows of multicomponent viscous compressible fluids”, Sib. elektron. matem. izv., 15 (2018), 631–649
D. A. Prokudin, “Unique solvability of initial-boundary value problem for a model system of equations for the polytropic motion of a mixture of viscous compressible fluids”, Sib. Èlektron. Mat. Izv., 14 (2017), 568–585
24.
A. E. Mamontov, D. A. Prokudin, “Viscous compressible homogeneous multi-fluids with multiple velocities: barotropic existence theory”, Sib. elektron. matem. izv., 14 (2017), 388–397;
A. E. Mamontov, D. A. Prokudin, “Existence of weak solutions to the three-dimensional problem of steady barotropic motions of mixtures of viscous compressible fluids”, Siberian Math. J., 58:1 (2017), 113–127
2018
26.
A. E. Mamontov, D. A. Prokudin, “Local solvability of the initial-boundary value problem for one-dimensional equations of polytropic flows of viscous compressible multifluids”, J. Math. Sci., 231:2 (2018), 227–242
2017
27.
A. E. Mamontov, D. A. Prokudin, “Modeling viscous compressible barotropic multi–fluid flows”, Journal of Physics: Conference Series, 894 (2017), 012058 , 8 pp.
D. A. Prokudin, “Global solvability of the initial boundary value problem for a model system of one–dimensional equations of polytropic flows of viscous compressible fluid mixtures”, Journal of Physics: Conference Series, 894 (2017), 012076 , 6 pp.
A. E. Mamontov, D. A. Prokudin, “Global solvability of 1D equations of viscous compressible multi–fluids”, Journal of Physics: Conference Series, 894 (2017), 012059 , 7 pp.
A. E. Mamontov, D. A. Prokudin, “Solubility of steady boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids”, Sib. Èlektron. Mat. Izv., 13 (2016), 664–693
31.
A. E. Mamontov, D. A. Prokudin, “Solubility of initial boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids”, Sib. Èlektron. Mat. Izv., 13 (2016), 541–583
32.
D. A. Prokudin, M. V. Krayushkina, “Solvability of a steady boundary value problem for a model system of equations of a barotropic motion of a mixture of viscous compressible fluids”, J. Appl. Industr. Math., 10:3 (2016), 417–428
33.
A. E. Mamontov, D. A. Prokudin, “Solvability of the regularized steady problem of the spatial motions of multicomponent viscous compressible fluids”, Siberian Math. J., 57:6 (2016), 1044–1054
2014
34.
A. E. Mamontov, D. A. Prokudin, “Solubility of a stationary boundary-value problem for the equations of motion of a one-temperature mixture of viscous compressible heat-conducting fluids”, Izv. Math., 78:3 (2014), 554–579
2013
35.
A. E. Mamontov, D. A. Prokudin, “Viscous comressible multi–fluids: modeling and multi–d existence”, Methods and applications of analysis, 20:2 (2013), 179–196
N. A. Kucher, A. E. Mamontov, D. A. Prokudin, “Stationary solutions to the equations of dynamics of mixtures of heat-conductive compressible viscous fluids”, Siberian Math. J., 53:6 (2012), 1075–1088
2009
37.
N. A. Kucher, D. A. Prokudin, “Stationary Solutions to the Equations of a Mixture of Compressible Viscous Fluids”, Sib. Zh. Ind. Mat., 12:3 (2009), 52–65
38.
N. A. Kucher, D. A. Prokudin, “Existence of Weak Solutions to the First Boundary Value Problem for Equations of Mixtures of Compressible Viscous Fluids”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:3 (2009), 33–53