Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Molyboga, Volodymyr Mykolayovych

Statistics Math-Net.Ru
Total publications: 1
Scientific articles: 1

Number of views:
This page:695
Abstract pages:500
Full texts:179
References:72
Candidate of physico-mathematical sciences (2005)
Speciality: 01.01.01 (Real analysis, complex analysis, and functional analysis)
E-mail:
Keywords: 1-D Schrödinger operators, distributional potentials, spectra.

Subject:

1-D Schrödinger operators with distributional potentials.

   
Main publications:
  1. V. Mikhailets, V. Molyboga, “One-dimensional Schrödinger operators with singular periodic potentials”, The one-dimensional Schrödinger operators $S(q)u:=-u''+q(x)u$, $u\in\mathrm{Dom}(S(q))$ with 1-periodic real-valued singular potentials $q(x)\in H_{per}^{-1}(\mathbb{R},\mathbb{R})$ are studied on the Hilbert space $L_2(\mathbb{R})$. An equivalence of five basic definitions for the operators $S(q)$ and their self-adjointness are established. A new proof of spectral continuity of the operators $S(q)$ is found. Endpoints of spectral gaps are precisely described, Methods Funct. Anal. Topology, 14:2 (2008), 184–200
  2. V. Mikhailets, V. Molyboga, “Singularly perturbed periodic and semiperiodic differential operators”, Ukrainian Math. J., 59:6 (2007), 785–797  crossref  mathscinet  zmath

https://www.mathnet.ru/eng/person42010
List of publications on Google Scholar
List of publications on ZentralBlatt

Publications in Math-Net.Ru Citations
2012
1. V. A. Mikhailets, V. M. Molyboga, “On the Spectrum of Singular Perturbations of Operators on the Circle”, Mat. Zametki, 91:4 (2012),  629–632  mathnet  mathscinet  elib; Math. Notes, 91:4 (2012), 588–591  isi  elib  scopus 11

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024