Closed graph theorem, theory of category, theory of measure, differencial equations, homological methods in functional analysis,
mathematical education.
Main publications:
“E. I. Smirnov, E. A. Zubova”, “Universalno slabaya skhodimost v topologicheskoi gruppe, assotsiirovannoi s # -algebroi mnozhestv”, Yaroslavskii pedagogicheskii vestnik. Seriya estestvennykh nauk, 3, Izd-vo YaGPU , Yaroslavl,:1 (2013), 7-11http://vestnik.yspu.org/releases/2013_1e/05.pdf
E. I. Smirnov, “Using homological methods on the base of iterated spectra in functional analysis”, Vladikavk. matem. zhurn., 14:4 (2012), 73–82
E. I. Smirnov, “Hausdorff spectra and Limits of Banach Spaces”, Trudy Mezhdunarodnoi konferentsii, posvyaschennoi 120 – letiyu so dnya rozhdeniya S. Banakha ("Lvov, 16–23 sentyabrya 2012 g."), Lvovskii natsionalnyi universitet im.I.Franko, Lvov, 2012, “34–35”http://www.lnu.edu.ua/faculty/mechmat/Departments/banach/index.html
“E. I. Smirnov, E. I. Berezhnoi, Yu. V. Bondarenko”, Geometricheskie svoistva konusov funktsii, Lambert Academic Publishing, Germany, 2012 , 140 pp.
“E. I. Smirnov, E. A. Zubova”, “O polunepreryvnosti snizu schetno poluadditivnykh funktsionalov na topologicheskoi gruppe”, Yaroslavskii pedagogicheskii vestnik.Seriya estestvennykh nauk., 3:4 (2012), “28–35”
“E. I.Smirnov”, “Ds-operatsiya Khausdorfa-Kolmogorova vo fraktalnykh konstruktsiyakh khausdorfovykh spektrov”, Trudy Mezhdunarodnoi konferentsii « Obuchenie fraktalnoi geometrii i informatike v shkole i vuze v svete idei A.N.Kolmogorova ("Kostroma, 6–9 dekabrya 2011 g."), Kostromskoi gosudarstvennyi universitet im.N.A.Nekrasova, Kostroma, 2011, “45–50”
“E. I. Smirnov”, “Hausdorff spectra and Sheaves of Locally Convex Spaces”, Yaroslavskii pedagogicheskii vestnik.Seriya estestvennykh nauk., 2010, no. 1, Izd-vo YaGPU, “27–36”
“E. I. Smirnov”, “Gomologicheskie metody v teorii khausdorfovykh spektrov”, Yaroslavskii pedagogicheskii vestnik.Seriya estestvennykh nauk., 2009, no. 1, Izd-vo YaGPU, “27–46”
“E. I. Smirnov”, “Hausdorff Spectra and Limits in Functional Analysis”, Trudy III Mezhdunarodnoi konferentsii ( 85 let L.D.Kudryavtseva) ("Moskva, 26-29 marta 2008 g."), RUDN, 2008, “106–108”
“E. I. Smirnov”, “Homological Methods in the theory of Hausdorff Spectra”, Proceedings Volum of International Congress of Mathematicians (“Madrid, 19-27 August 2006”), European Mathematical Society Publishing House, 2006, “363”
E. Smirnov, Hausdorff spectra in functional analysis, Translated from the Russian by Ian Tweddle, Springer Monographs in Mathematics, Springer-Verlag London Ltd., London, 2002 , viii+209 pp.
“E. I. Smirnov”, “Topological Problem of H-limit of Hausdorff Spectrum”, The 12-th Summer Conference on General Topology, Set-theoretic Topology and Applied Topology (“North Bay, 12–16 August 1997, Canada”), Nipissing University, Ontario, Canada, 1997, “37–45”
E. I. Smirnov, “The theory of Hausdorff spectra in the category of locally convex spaces”, Funct. Approx. Comment. Math., 24 (1996), 17–33
“E. I. Smirnov”, “H-limit of Hausdorff Spectra.”, Toposym Prague, Proceedings Volum (“Prague, 1996”), Carles University, 1996, “163–181”
E. I. Smirnov, “Hausdorff spectra and the closed graph theorem”, Topological vector spaces, algebras and related areas (Hamilton, ON, 1994), Pitman Res. Notes Math. Ser., 316, Longman Sci. Tech., Harlow, 1994, 37–49
"E. I. Smirnov ", Khausdorfovy spektry v funktsionalnom analize, Yaroslavskii politekhnicheskii institut, Yaroslavl, 1994 , 161 pp.
E. I. Smirnov, “A property of countably semiadditive functionals”, Qualitative and approximate methods for investigating operator equations (Russian), Yaroslav. Gos. Univ., Yaroslavl\cprime, 1986, 71–79, 143
E. I. Smirnov, “A conjugate space to a Suslin space”, Qualitative and approximate methods for investigating operator equations (Russian), Yaroslav. Gos. Univ., Yaroslavl\cprime, 1985, 52–60, 154
E. I. Smirnov, “Absolute continuity of generalized measures”, Qualitative and approximate methods for investigating operator equations, Yaroslav. Gos. Univ., Yaroslavl\cprime, 1984, 31–37, 126
E. I. Smirnov, “Uniform well-posedness of the Cauchy problem in a Suslin space”, Differential and integral equations, Gor'kov. Gos. Univ., Gorki, 1984, 94–99, 164
P. P. Zabreiko, E. I. Smirnov, “Principles of uniform boundedness”, Math. Notes, 35:2 (1984), 151–156
E. I. Smirnov, “On the normality of a cone in a locally convex space”, Qualitative and approximate methods for the investigation of operator equations (Russian), Yaroslav. Gos. Univ., Yaroslavl\cprime, 1983, 79–84, 133
P. P. Zabreĭko, A. I. Povolotskiĭ, E. I. Smirnov, “Two classes of linear operators in Hilbert space”, Qualitative and approximate methods for investigating operator equations (Russian), Yaroslav. Gos. Univ., Yaroslavl\cprime, 1982, 90–93, 169
E. I. Smirnov, “Nonoblateness of a cone in a locally convex space”, Qualitative and approximate methods for the investigation of operator equations, No. 3 (Russian), Yaroslav. Gos. Univ., Yaroslavl\cprime, 1978, 162–170
E. I. Smirnov, “Topological abelian groups”, Qualitative and approximate methods for the investigation of operator equations, No. 2 (Russian), Yaroslav. Gos. Univ., Yaroslavl\cprime, 1977, 189–192
P. P. Zabreiko, E. I. Smirnov, “On the closed graph theorem”, Siberian Math. J., 18:2 (1977), 218–224
E. I. Smirnov, “The theory of sheaves and a problem of A. Grothendieck”, Qualitative and approximate methods for the investigation of operator equations, No. 1 (Russian), Jaroslav. Gos. Univ., Yaroslavl, 1976, 160–163
E. I. Smirnov, “The continuity of semiadditive functionals”, Math. Notes, 19:4 (1976), 329–333
E. I. Smirnov, “Bases in inductive limits of linear metric spaces”, Vestnik Jaroslav. Univ., 1975, no. Vyp. 12, 125–130
E.-I.-Smirnov, S.-A.-Tikhomirov, “The Limit Object of Hausdorff_ Spectrum in the Category TLC”, Journal of Mathematical and Computational Science, 5:2 (2015) , 15 pp.
2.
“E. I. Smirnov, E. A. Zubova”, “Universalno slabaya skhodimost v topologicheskoi gruppe, assotsiirovannoi s # -algebroi mnozhestv”, Yaroslavskii pedagogicheskii vestnik. Seriya estestvennykh nauk, 3, Izd-vo YaGPU , Yaroslavl,:1 (2013), 7-11http://vestnik.yspu.org/releases/2013_1e/05.pdf
3.
E. I. Smirnov, “Using homological methods on the base of iterated spectra in functional analysis”, Vladikavk. matem. zhurn., 14:4 (2012), 73–82
4.
E. I. Smirnov, “Hausdorff spectra and Limits of Banach Spaces”, Trudy Mezhdunarodnoi konferentsii, posvyaschennoi 120 – letiyu so dnya rozhdeniya S. Banakha ("Lvov, 16–23 sentyabrya 2012 g."), Lvovskii natsionalnyi universitet im.I.Franko, Lvov, 2012, “34–35”http://www.lnu.edu.ua/faculty/mechmat/Departments/banach/index.html
5.
“E. I. Smirnov, E. A. Zubova”, “O polunepreryvnosti snizu schetno poluadditivnykh funktsionalov na topologicheskoi gruppe”, Yaroslavskii pedagogicheskii vestnik.Seriya estestvennykh nauk., 3:4 (2012), “28–35”
6.
“E. I.Smirnov”, “Ds-operatsiya Khausdorfa-Kolmogorova vo fraktalnykh konstruktsiyakh khausdorfovykh spektrov”, Trudy Mezhdunarodnoi konferentsii « Obuchenie fraktalnoi geometrii i informatike v shkole i vuze v svete idei A.N.Kolmogorova ("Kostroma, 6–9 dekabrya 2011 g."), Kostromskoi gosudarstvennyi universitet im.N.A.Nekrasova, Kostroma, 2011, “45–50”
“E. I. Smirnov”, “Hausdorff spectra and Sheaves of Locally Convex Spaces”, Yaroslavskii pedagogicheskii vestnik.Seriya estestvennykh nauk., 2010, no. 1, Izd-vo YaGPU, “27–36”
10.
“E. I. Smirnov”, “Gomologicheskie metody v teorii khausdorfovykh spektrov”, Yaroslavskii pedagogicheskii vestnik.Seriya estestvennykh nauk., 2009, no. 1, Izd-vo YaGPU, “27–46”
11.
“E. I. Smirnov”, “Hausdorff Spectra and Limits in Functional Analysis”, Trudy III Mezhdunarodnoi konferentsii ( 85 let L.D.Kudryavtseva) ("Moskva, 26-29 marta 2008 g."), RUDN, 2008, “106–108”
12.
E. Smirnov, Hausdorff spectra in functional analysis, Translated from the Russian by Ian Tweddle, Springer Monographs in Mathematics, Springer-Verlag London Ltd., London, 2002 , viii+209 pp.
13.
“E. I. Smirnov”, “Topological Problem of H-limit of Hausdorff Spectrum”, The 12-th Summer Conference on General Topology, Set-theoretic Topology and Applied Topology (“North Bay, 12–16 August 1997, Canada”), Nipissing University, Ontario, Canada, 1997, “37–45”
14.
E. I. Smirnov, “The theory of Hausdorff spectra in the category of locally convex spaces”, Funct. Approx. Comment. Math., 24 (1996), 17–33
15.
“E. I. Smirnov”, “H-limit of Hausdorff Spectra.”, Toposym Prague, Proceedings Volum (“Prague, 1996”), Carles University, 1996, “163–181”
16.
E. I. Smirnov, “Hausdorff spectra and the closed graph theorem”, Topological vector spaces, algebras and related areas (Hamilton, ON, 1994), Pitman Res. Notes Math. Ser., 316, Longman Sci. Tech., Harlow, 1994, 37–49
17.
E. I. Smirnov, “A property of countably semiadditive functionals”, Qualitative and approximate methods for investigating operator equations (Russian), Yaroslav. Gos. Univ., Yaroslavl\cprime, 1986, 71–79, 143
18.
E. I. Smirnov, “A conjugate space to a Suslin space”, Qualitative and approximate methods for investigating operator equations (Russian), Yaroslav. Gos. Univ., Yaroslavl\cprime, 1985, 52–60, 154
19.
E. I. Smirnov, “Absolute continuity of generalized measures”, Qualitative and approximate methods for investigating operator equations, Yaroslav. Gos. Univ., Yaroslavl\cprime, 1984, 31–37, 126
20.
E. I. Smirnov, “Uniform well-posedness of the Cauchy problem in a Suslin space”, Differential and integral equations, Gor'kov. Gos. Univ., Gorki, 1984, 94–99, 164
21.
P. P. Zabreiko, E. I. Smirnov, “Principles of uniform boundedness”, Math. Notes, 35:2 (1984), 151–156
22.
E. I. Smirnov, “On the normality of a cone in a locally convex space”, Qualitative and approximate methods for the investigation of operator equations (Russian), Yaroslav. Gos. Univ., Yaroslavl\cprime, 1983, 79–84, 133
23.
P. P. Zabreĭko, A. I. Povolotskiĭ, E. I. Smirnov, “Two classes of linear operators in Hilbert space”, Qualitative and approximate methods for investigating operator equations (Russian), Yaroslav. Gos. Univ., Yaroslavl\cprime, 1982, 90–93, 169
24.
E. I. Smirnov, “Nonoblateness of a cone in a locally convex space”, Qualitative and approximate methods for the investigation of operator equations, No. 3 (Russian), Yaroslav. Gos. Univ., Yaroslavl\cprime, 1978, 162–170
25.
E. I. Smirnov, “Topological abelian groups”, Qualitative and approximate methods for the investigation of operator equations, No. 2 (Russian), Yaroslav. Gos. Univ., Yaroslavl\cprime, 1977, 189–192
26.
P. P. Zabreiko, E. I. Smirnov, “On the closed graph theorem”, Siberian Math. J., 18:2 (1977), 218–224
27.
E. I. Smirnov, “The theory of sheaves and a problem of A. Grothendieck”, Qualitative and approximate methods for the investigation of operator equations, No. 1 (Russian), Jaroslav. Gos. Univ., Yaroslavl, 1976, 160–163
28.
E. I. Smirnov, “The continuity of semiadditive functionals”, Math. Notes, 19:4 (1976), 329–333
29.
E. I. Smirnov, “Bases in inductive limits of linear metric spaces”, Vestnik Jaroslav. Univ., 1975, no. Vyp. 12, 125–130
Books
30.
“E. I. Smirnov, E. I. Berezhnoi, Yu. V. Bondarenko”, Geometricheskie svoistva konusov funktsii, Lambert Academic Publishing, Germany, 2012 , 140 pp.
31.
"E. I. Smirnov ", Khausdorfovy spektry v funktsionalnom analize, Yaroslavskii politekhnicheskii institut, Yaroslavl, 1994 , 161 pp.
Proceedings
32.
“E. I. Smirnov”, “Homological Methods in the theory of Hausdorff Spectra”, Proceedings Volum of International Congress of Mathematicians (“Madrid, 19-27 August 2006”), European Mathematical Society Publishing House, 2006, “363”
Presentations in Math-Net.Ru
1.
Интерпретация и адаптация сложных систем и знаний как средство формирования математической грамотности школьников E. I. Smirnov, S. A. Tikhomirov, V. S. Abaturova VI International Conference "Function Spaces. Differential Operators. Problems of Mathematical Education", dedicated to the centennial anniversary of the corresponding member of Russian Academy of Sciences, academician of European Academy of Sciences L.D. Kudryavtsev November 16, 2023 15:20