|
|
Publications in Math-Net.Ru |
Citations |
|
1989 |
1. |
G. S. Ganshin, “Matrix methods for computing the values of a multivariable polynomial”, Zh. Vychisl. Mat. Mat. Fiz., 29:8 (1989), 1232–1236 ; U.S.S.R. Comput. Math. Math. Phys., 29:4 (1989), 184–187 |
|
1984 |
2. |
G. S. Ganshin, “Calculation of maximum value of twice-differentiable function with a posteriori error estimate”, Mat. Zametki, 35:2 (1984), 243–249 ; Math. Notes, 35:2 (1984), 128–131 |
|
1983 |
3. |
S. G. Girlin, G. S. Ganshin, “Optimal search algorithms for the least value of a function”, Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 3, 75–77 |
|
1982 |
4. |
G. S. Ganshin, “Estimation of a function that satisfies coordinate-wise a Lipschitz condition”, Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 12, 84 ; Soviet Math. (Iz. VUZ), 26:12 (1982), 101 |
5. |
S. B. Vasil'ev, G. S. Ganshin, “Sequential search algorithm for the largest value of a twice differentiable function”, Mat. Zametki, 31:4 (1982), 613–618 ; Math. Notes, 31:4 (1982), 312–315 |
|
1979 |
6. |
G. S. Ganshin, “Optimization of algorithms in mesh classes”, Zh. Vychisl. Mat. Mat. Fiz., 19:4 (1979), 811–821 ; U.S.S.R. Comput. Math. Math. Phys., 19:4 (1979), 10–21 |
2
|
|
1977 |
7. |
G. S. Ganshin, “Optimal passive algorithms for the computation of the largest value of functions on an interval”, Zh. Vychisl. Mat. Mat. Fiz., 17:3 (1977), 562–571 ; U.S.S.R. Comput. Math. Math. Phys., 17:3 (1977), 8–17 |
4
|
|
1976 |
8. |
G. S. Ganshin, “Simplest sequential search algorithm for the largest value of a twice-differentiable function”, Mat. Zametki, 19:6 (1976), 871–872 ; Math. Notes, 19:6 (1976), 508–509 |
9. |
G. S. Ganshin, “Computation of the largest value of a function”, Zh. Vychisl. Mat. Mat. Fiz., 16:1 (1976), 30–39 ; U.S.S.R. Comput. Math. Math. Phys., 16:1 (1976), 26–36 |
3
|
|
1971 |
10. |
G. S. Ganshin, “Calculation of the real roots of polynomials”, Zh. Vychisl. Mat. Mat. Fiz., 11:6 (1971), 1581–1584 ; U.S.S.R. Comput. Math. Math. Phys., 11:6 (1971), 283–287 |
11. |
G. S. Ganshin, “Extension of the convergence region of Newton's method”, Zh. Vychisl. Mat. Mat. Fiz., 11:5 (1971), 1294–1296 ; U.S.S.R. Comput. Math. Math. Phys., 11:5 (1971), 249–252 |
|
|
|