finite element methods, interface problems,elliptic equations.
Subject:
Discontinuous and stabilized finite element methods, discontinuous Galerkin finite element methods for homogeneous and heterogeneous interface problems, computational mechanics, computational fluid dynamics,
petroleum reservoir simulations.
Main publications:
MOZOLEVSKI, I., SÜLI, Endre, BÖSING, Paulo Rafael
Discontinuous Galerkin finite element approximation of the two-dimensional Navier–Stokes equations in stream-function formulation. Communications in Numerical Methods in Engineering, v. 23, p. 447–459, 2007.
MOZOLEVSKI, I., SÜLI, Endre, BÖSING, Paulo Rafael
hp-version a priori error analysis of interior penalty discontinuous Galerkin finite element approximations to the biharmonic equation. Journal of Scientific Computing, v. 30, p. 465–491, 2007.
SÜLI, Endre, MOZOLEVSKI, I.
hp-version interior penalty DGFEMs for the biharmonic equation. Computer Methods in Applied Mechanics and Engineering, v. 196, p. 1851–1863, 2007.
Burman E., Ern A., MOZOLEVSKI, I., Stamm B.
The symmetric discontinuous Galerkin method does not need stabilization in 1D for polynomial orders $p\ge 2$. Comptes Rendus de l'Académie des Sciences. Série 1, Mathématique, v. 345, p. 599–602, 2007.
MOZOLEVSKI, I., SÜLI, Endre, BÖSING, Paulo Rafael
Discontinuous Galerkin finite element method for a fourth-order nonlinear elliptic equation related to the two-dimensional Navier–Stokes equatiion. Springer Verlag Proceedings Of Enumath 2005 Santiago de Compostela Spain, v. 1, p. 423–430, 2006.
MOZOLEVSKI, I., SÜLI, Endre, BÖSING, Paulo Rafael
hp-Version a priori Error Analysis of Interior Penalty Discontinuous Galerkin Finite Element Approximations to the Biharmonic Equation. Journal Of Scientific Computing, v. Online, 2006.
MOZOLEVSKI, I., SÜLI, Endre
A priori error analysis for the hp-version of the discontinuous Galerkin finite element method for the biharmonic equation. Computational Methods In Applied Mathematics, v. 3, p. 596–607, 2003.
S. E. Ananich, P. P. Matus, I. E. Mozolevski, “Difference schemes for Boltzmann–Fokker–Plank equation”, Matem. Mod., 9:1 (1997), 99–115
1996
2.
I. E. Mozolevski, “About mathematical modelling of multidimensional ion implantation problems”, Matem. Mod., 8:1 (1996), 25–38
1995
3.
I. E. Mozolevski, “The Dirichlet problem for nonlinear quasi-elliptic operators”, Differ. Uravn., 31:5 (1995), 835–839; Differ. Equ., 31:5 (1995), 774–778
1982
4.
I. E. Mozolevski, “The conjugation problem for degenerate elliptic equations”, Differ. Uravn., 18:11 (1982), 1996–1998
1977
5.
I. E. Mozolevski, “The joining together of degenerate elliptic equations. II”, Differ. Uravn., 13:10 (1977), 1845–1854
6.
I. E. Mozolevski, “The joining together of degenerate elliptic equations. I”, Differ. Uravn., 13:9 (1977), 1667–1677
1976
7.
I. E. Mozolevski, “The Dirichlet problem for linear quasielliptic differential operators with unbounded lowest coefficients”, Differ. Uravn., 12:6 (1976), 1112–1120