Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Mozolevski, Igor Evguenievich

Statistics Math-Net.Ru
Total publications: 7
Scientific articles: 7

Number of views:
This page:275
Abstract pages:1548
Full texts:695
Associate professor
Candidate of physico-mathematical sciences (1974)
Speciality: 01.01.03 (Mathematical physics)
E-mail:
Website: https://www.mtm.ufsc.br/~igor.mozolevski
Keywords: finite element methods, interface problems,elliptic equations.

Subject:

Discontinuous and stabilized finite element methods, discontinuous Galerkin finite element methods for homogeneous and heterogeneous interface problems, computational mechanics, computational fluid dynamics, petroleum reservoir simulations.

   
Main publications:
  • MOZOLEVSKI, I., SÜLI, Endre, BÖSING, Paulo Rafael Discontinuous Galerkin finite element approximation of the two-dimensional Navier–Stokes equations in stream-function formulation. Communications in Numerical Methods in Engineering, v. 23, p. 447–459, 2007.
  • MOZOLEVSKI, I., SÜLI, Endre, BÖSING, Paulo Rafael hp-version a priori error analysis of interior penalty discontinuous Galerkin finite element approximations to the biharmonic equation. Journal of Scientific Computing, v. 30, p. 465–491, 2007.
  • SÜLI, Endre, MOZOLEVSKI, I. hp-version interior penalty DGFEMs for the biharmonic equation. Computer Methods in Applied Mechanics and Engineering, v. 196, p. 1851–1863, 2007.
  • Burman E., Ern A., MOZOLEVSKI, I., Stamm B. The symmetric discontinuous Galerkin method does not need stabilization in 1D for polynomial orders $p\ge 2$. Comptes Rendus de l'Académie des Sciences. Série 1, Mathématique, v. 345, p. 599–602, 2007.
  • MOZOLEVSKI, I., SÜLI, Endre, BÖSING, Paulo Rafael Discontinuous Galerkin finite element method for a fourth-order nonlinear elliptic equation related to the two-dimensional Navier–Stokes equatiion. Springer Verlag Proceedings Of Enumath 2005 Santiago de Compostela Spain, v. 1, p. 423–430, 2006.
  • MOZOLEVSKI, I., SÜLI, Endre, BÖSING, Paulo Rafael hp-Version a priori Error Analysis of Interior Penalty Discontinuous Galerkin Finite Element Approximations to the Biharmonic Equation. Journal Of Scientific Computing, v. Online, 2006.
  • MOZOLEVSKI, I., SÜLI, Endre A priori error analysis for the hp-version of the discontinuous Galerkin finite element method for the biharmonic equation. Computational Methods In Applied Mathematics, v. 3, p. 596–607, 2003.

https://www.mathnet.ru/eng/person37082
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/320365

Publications in Math-Net.Ru Citations
1997
1. S. E. Ananich, P. P. Matus, I. E. Mozolevski, “Difference schemes for Boltzmann–Fokker–Plank equation”, Matem. Mod., 9:1 (1997),  99–115  mathnet  mathscinet
1996
2. I. E. Mozolevski, “About mathematical modelling of multidimensional ion implantation problems”, Matem. Mod., 8:1 (1996),  25–38  mathnet  zmath
1995
3. I. E. Mozolevski, “The Dirichlet problem for nonlinear quasi-elliptic operators”, Differ. Uravn., 31:5 (1995),  835–839  mathnet  mathscinet; Differ. Equ., 31:5 (1995), 774–778
1982
4. I. E. Mozolevski, “The conjugation problem for degenerate elliptic equations”, Differ. Uravn., 18:11 (1982),  1996–1998  mathnet  mathscinet  zmath
1977
5. I. E. Mozolevski, “The joining together of degenerate elliptic equations. II”, Differ. Uravn., 13:10 (1977),  1845–1854  mathnet  mathscinet  zmath
6. I. E. Mozolevski, “The joining together of degenerate elliptic equations. I”, Differ. Uravn., 13:9 (1977),  1667–1677  mathnet  mathscinet  zmath
1976
7. I. E. Mozolevski, “The Dirichlet problem for linear quasielliptic differential operators with unbounded lowest coefficients”, Differ. Uravn., 12:6 (1976),  1112–1120  mathnet  mathscinet  zmath

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024