nonlinear problems, solitons, comlicated nonlinear systems and structures.
Subject:
Applied mathematics.
Nonlinear waves.
Analytical metods for nonlinear problems solution.
Main publications:
V. M. Babich, V. S. Buldyrev, I. A. Molotkov, Prostranstvenno-vremennoi luchevoi metod. Lineinye i nelineinye volny, Izd-vo Leningradskogo un-ta, Leningrad, 1985
I. A. Molotkov, S. A. Vakulenko, Sosredotochennye nelineinye volny, Izd-vo Leningradskogo un-ta, Leningrad, 1988
I. A. Molotkov, S. A. Vakulenko, M. A. Bisyarin, Nelineinye lokalizovannye volnovye protsessy, Izd-vo Yanus-K, Moskva, 1999
I. A. Molotkov, Analiticheskie metody v teorii nelineinykh voln, Izd-vo Fizmatlit, Moskva, 2003
I. A. Molotkov, Analytical Methods in Nonlinear Wave Theory, Pensoft Publishers, Sofia–Moscow, 2005
M. A. Guzev, I. A. Molotkov, “Longitudinal finite-amplitude wave in nonlinear homogeneous elastic medium. The equations of Landau-Murnaghan”, Dal'nevost. Mat. Zh., 16:2 (2016), 160–168
2009
2.
V. P. Maslov, I. A. Molotkov, “High-temperature processes in a porous medium”, TVT, 47:2 (2009), 242–246; High Temperature, 47:2 (2009), 223–227
I. A. Molotkov, M. A. Bisyarin, “Bright and dark pulses in optical fibres in the vicinity of the zero-dispersion wavelength”, Kvantovaya Elektronika, 34:2 (2004), 161–164 [Quantum Electron., 34:2 (2004), 161–164]
S. A. Vakulenko, V. P. Maslov, I. A. Molotkov, A. I. Shafarevich, “Asymptotic solutions of the Hartree equation that are
concentrated, as $h\to 0$, in a small neighborhood of a curve”, Dokl. Akad. Nauk, 345:6 (1995), 743–745
I. A. Molotkov, V. N. Nikolaevskii, “Nonlinear evolution of the quasi-longitudinal waves in a viscoelastic rock mass”, Dokl. Akad. Nauk, 336:6 (1994), 820–822
1985
6.
S. A. Vakulenko, I. A. Molotkov, “Stationary wave baems in strongly nonlinear three-dimensional and inhomogeneous medium”, Zap. Nauchn. Sem. LOMI, 148 (1985), 52–60
S. A. Vakulenko, I. A. Molotkov, “Waves in the linear inhomogeneous medium concentrated in the vicinity of a given curve”, Dokl. Akad. Nauk SSSR, 262:3 (1982), 587–591
I. A. Molotkov, A. S. Starkov, “Local resonance interaction of normal waves in a system containing connected waveguides”, Dokl. Akad. Nauk SSSR, 254:2 (1980), 327–331
9.
I. A. Molotkov, S. A. Vakulenko, “Nonlinear longitudinal waves in inhomogeneous rods”, Zap. Nauchn. Sem. LOMI, 99 (1980), 64–73; J. Soviet Math., 20:5 (1982), 2434–2441
I. A. Molotkov, A. B. Plachenov, “Ungtationary modes in a thin and curved waveguide of variable width”, Zap. Nauchn. Sem. LOMI, 89 (1979), 210–218; J. Soviet Math., 19:4 (1982), 1447–1453
I. A. Molotkov, A. S. Starkov, “Local degeneration of waves in a thin waveguide”, Zap. Nauchn. Sem. LOMI, 78 (1978), 138–148; J. Soviet Math., 22:1 (1983), 1090–1098
I. A. Molotkov, “Excitation of the surface-wave for the case of diffraction on the impedance contour”, Zap. Nauchn. Sem. LOMI, 17 (1970), 151–167
1968
16.
I. A. Molotkov, “Green's function for the diffraction problem on a convex cylinder with variable impedance”, Trudy Mat. Inst. Steklov., 95 (1968), 119–131; Proc. Steklov Inst. Math., 95 (1968), 141–157
1966
17.
I. A. Molotkov, I. V. Muhina, “Nonstationary wave propagation velocity minimum”, Trudy Mat. Inst. Steklov., 92 (1966), 165–181
1961
18.
I. A. Molotkov, “Nonstationary distribution of waves in the region of the geometric shadow in an inhomogeneous medium”, Dokl. Akad. Nauk SSSR, 140:3 (1961), 557–559
1960
19.
V. S. Buldyrev, I. A. Molotkov, “Investigation of exact solutions of time-dependent diffraction problems in the neighborhood of slide-off fronts”, Dokl. Akad. Nauk SSSR, 134:5 (1960), 1051–1054
1979
20.
I. A. Molotkov, A. S. Starkov, “Letter to the editors: “Local degeneration of waves in a thin waveguide” (Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 78 (1978), 138–148)”, Zap. Nauchn. Sem. LOMI, 89 (1979), 286; J. Soviet Math., 19:4 (1982), 1506