Fourier method for numerical integration of Ito stochastic differential equations (SDEs)$,$ SDEs of jump-diffusion type as well as for non-commutative semilinear stochastic partial differential equations (SPDEs) with nonlinear multiplicative trace class noise (within the framework of a semigroup approach or an approach based on the so-called mild solution) has been proposed and developed$.$ More precisely$,$ the generalized multiple Fourier series (converging in the sense of norm in Hilbert space $L_2([t,\hspace{0.2mm} T]^k),$ $k\in \mathbb {N}$) in arbitrary complete orthonormal systems of functions in the space $L_2([t,\hspace{0.2mm} T]^k),$ $k\in \mathbb {N}$ have been applied to expansion and strong approximation (mean-square approximation$,$ approximation in the mean of degree $p$ $(p>0)$ as well as approximation with probability $1$) of iterated Ito stochastic integrals of the form \begin{equation} \label{1} \int\limits_t^T\psi_k(t_k)\ \ldots \int\limits_t^{t_{2}} \psi_1(t_1) d{\bf W}_{t_1}^{(i_1)}~ \ldots~ d{\bf W}_{t_k}^{(i_k)}, \end{equation} where $k\in \mathbb {N},\ $
$\psi_{1}(\tau),\ldots,\psi_k(\tau)\in L_2[t, T],\ $ ${\bf W}_{\tau} \in \mathbb{R^m}$ is a standard multidimensional Wiener process with independent components ${\bf W}_{\tau}^{(i)}$ $(i=1,\ldots,m)\ $ and $\ {\bf W}_{\tau}^{(0)}:=\tau,\ $ $i_1,\ldots,i_k$ $=0,\ 1,\ldots,m.$
The relationship of the mentioned expansion with the multiple Wiener stochastic integrals with respect to components of a multidimensional Wiener process and Hermite polynomials of the vector random argument is established.
The mean-square approximation error for iterated Ito stochastic integrals of form $(1)$ of arbitrary multiplicity $k,\ $ $k\in\mathbb{N}$ for all possible combinations of indices $i_1,\ldots, i_k \in\{1,\ldots, m\}$ in the framework of this approach has been calculated exactly.
Theorem on convergence with probability $1$ for expansions of iterated Ito stochastic integrals $(1)$ of arbitrary multiplicity $k\in\mathbb{N}$ has been fomulated and proved for
the case of multiple Fourier-Legendre series and multiple trigonometric Fourier series converging in the sense of norm in the space $L_2([t,\hspace{0.2mm} T]^k),$ $k\in \mathbb {N}$ as well as for $\psi_{1}(\tau),\ldots,\psi_k(\tau)\in C^1[t,T].$ The rate of convergence in this theorem is found.
Generalizations of the Fourier method for complete orthonormal with weight $r(t_1) \ldots r(t_k)$ systems of functions in the space $L_2([t,\hspace{0.2mm} T]^k),$ $k\in \mathbb {N}$ as well as for some other types of iterated stochastic integrals (iterated stochastic integrals with respect to martingale Poisson measures and iterated stochastic integrals with respect to martingales) were obtained$.$
The above results were adapted under a special condition on trace series for iterated Stratonovich stochastic integrals of the form
\begin{equation} \label{2} \int\limits_t^T\psi_k(t_k)\ \ldots \int\limits_t^{t_{2}} \psi_1(t_1)\hspace{0.3mm} \circ d{\bf W}_{t_1}^{(i_1)}\ \ldots\hspace{0.5mm} \circ d{\bf W}_{t_k}^{(i_k)}, \end{equation}
where $k\in \mathbb {N},\ $
$\psi_{1}(\tau),\ldots,\psi_k(\tau)\in L_2[t,T],\ $ ${\bf W}_{\tau} \in \mathbb{R^m}$ is a standard multidimensional Wiener process with independent components ${\bf W}_{\tau}^{(i)}$ $(i=1,\ldots,m)\ $ and $\ {\bf W}_{\tau}^{(0)}:=\tau,\ $ $i_1,\ldots,i_k$ $=0,\ 1,\ldots,m.$
The above condition on trace series was removed for the following three cases.
$1.$ The case of multiple Fourier series in complete orthonormal systems of Legendre polynomials and trigonometric functions (Fourier basis) in $L_2([t,\hspace{0.2mm} T]^k)$
as well as $\psi_1(\tau),\ldots,\psi_k(\tau)\in C^1[t,T]$ $(k=1,\ldots,5),$ $\psi_1(\tau),\ldots,\psi_6(\tau)\equiv 1$ $(k=6).$
The rate of mean-square convergence of expansions of iterated Stratonovich stochastic integrals
is found for this case
$(k=1,\ldots,5).$
$2.$ The case of multiple Fourier series in arbitrary complete orthonormal systems in $L_2([t,T]^k)$ and
$\psi_1(\tau), \psi_2(\tau)\in L_2[t,T]$ $(k=1, 2),$ $\psi_1(\tau),\ldots, \psi_k(\tau)\in C[t, T]$ $(k=3,\ 4,\ 5).$
$3.$ The case of multiple Fourier series in arbitrary complete orthonormal systems in $L_2([t,T]^k)$ and
$\psi_1(\tau), \ldots, \psi_k(\tau)$ $\in$ $C[t, T]\ $ $(k\in\mathbb{N})$
(https://arxiv.org/pdf/2003.14184v57, Sect. 2.31, Theorem 2.61).
These results can be interpreted as Wong-Zakai type theorems on the convergence of iterated Riemann-Stieltjes integrals to iterated Stratonovich stochastic integrals. The hypothesis on expansion of iterated Stratonovich stochastic integrals of form $(2)$ has been formulated for the case of an arbitrary multiplicity $k\in \mathbb {N}.$
We formulated and proved two theorems on expansion of iterated Stratonovich stochastic integrals of form $(2)$ of arbitrary multiplicity $k\in \mathbb {N}$ based on iterated Fourier series converging pointwise.
Numerical simulation of iterated Ito and Stratonovich stochastic integrals $(1)$ and $(2)$ is one of the main problems at the stage of numerical realization of high-order strong numerical methods for Ito SDEs and SDEs of jump-diffusion type$.$
Fourier method for iterated Ito stochastic integrals $(1)$ is also applied to the mean-square approximation of iterated stochastic integrals with respect to the infinite-dimensional $Q$-Wiener process$.$ In particular$,$ to the mean-square approximation of integrals of the form $$ \int\limits_{t}^{T} \Psi_k(Z) \left( \ldots \left(\hspace{0.2mm} \int\limits_{t}^{t_2} \Psi_1(Z) \psi_1(t_1) d{\bf W}_{t_1}({\bf x})\right) \ldots \right) \psi_k(t_k) d{\bf W}_{t_k}({\bf x}), $$ where $k\in \mathbb {N},\hspace{0.2mm}$ ${\bf W}_{\tau}({\bf x})$ is an $U$-$\hspace{0.2mm}$valued $Q\hspace{0.2mm}$-$\hspace{0.2mm}$Wiener process$,$ $Z:$ $\Omega \rightarrow H$ is an ${\bf F}_t/{\cal B}(H)\hspace{0.2mm}$-$\hspace{0.2mm}$measurable mapping$,$ $\Psi_k(v) (\hspace{0.5mm} \ldots ( \Psi_1(v) ) \ldots )$ is a $k~$-$\hspace{0.2mm}$linear Hilbert-Schmidt operator mapping from $U_0\times\ldots \times U_0$ to $H$ for all $v\in H,~$
$\psi_1(\tau),\ldots,\psi_k(\tau)\in L_2[t,T],\ $ $Q:~U \rightarrow U$ is a trace class operator$,$ $\hspace{0.2mm}$ $U,$ $H$ are separable real-valued Hilbert spaces$,\ $ $U_0=Q^{1/2}U.$
Mean-square approximation of iterated stochastic integrals with respect to the infinite-dimensional $Q$-Wiener process is one of the most difficult problems in numerical implementation of high-order strong approximation schemes (with respect to the temporal discretization) for non-commutative semilinear SPDEs with nonlinear multiplicative trace class noise (approximation schemes based on the so-called mild solution)$.$
Legende polynomials were first applied to the mean-square approximation of iterated Ito and Stratonovich stochastic integrals $(1)$ and $(2)$ with multiplicities $1$ to $6.$ It is shown that the Legendre polynomial system is the optimal system for solving this problem for $k\ge 3.$
Theorems on replacing the order of integration for iterated Ito stochastic integrals and iterated stochastic integrals with respect to martingales were formulated and proved$.$
The so-called unified Ito-Taylor and Stratonovich-Taylor expansions were derived$.$
Strong numerical methods of high-orders of accuracy $\gamma =1.0,$ $1.5,$ $2.0,$ $2.5,$ $3.0, ... $ for Ito SDEs with multidimensional and non-commutative noise were constructed$.$ Among them there are explicit and implicit$,$ one-step and multistep methods as well as the methods of Runge-Kutta type$.$
His research interests also include various types of stochastic integrals and their properties as well as the numerical modeling of linear and nonlinear stochastic dynamical systems$.$
Biography
In 1993 he graduated from Department of Mechanics and Control Processes of Faculty of Physics and Mechanics of Saint-Petersburg State Technical University (Peter the Great Saint-Petersburg Polytechnic University). Ph.D. (1996), doctor of phisico-mathematical sciences (2003), professor of Department of Mathematics of Peter the Great Saint-Petersburg Polytechnic University since 2006, author of monographs on numerical integration of Ito stochastic differential equations and strong approximation of iterated Ito and Stratonovich stochastic integrals.
Main publications:
Kuznetsov D. F., Kuznetsov M. D., “Mean-square approximation of iterated stochastic integrals from strong exponential Milstein and Wagner-Platen methods for non-commutative semilinear SPDEs based on multiple Fourier-Legendre series”, Recent Developments in Stochastic Methods and Applications, ICSM-5 2020, Springer Proceedings in Mathematics & Statistics, 371, eds. Shiryaev A.N., Samouylov K.E, Kozyrev D.V., Springer, Cham, 2021, 17–32
Kuznetsov D. F., “Explicit one-step numerical method with the strong convergence order of 2.5 for Ito stochastic differential equations with a multi-dimensional nonadditive noise based on the Taylor–Stratonovich expansion”, "Computational Mathematics and Mathematical Physics", 60:3 (2020), 379–389
Kuznetsov D. F., “A comparative analysis of efficiency of using the Legendre polynomials and trigonometric functions for the numerical solution of Ito stochastic differential equations”, "Computational Mathematics and Mathematical Physics", 59:8 (2019), 1236–1250
Kuznetsov D. F., “Development and application of the Fourier method for the numerical solution of Ito stochastic differential equations”, "Computational Mathematics and Mathematical Physics", 58:7 (2018), 1058–1070
Kuznetsov D. F., “Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals: Method of Generalized Multiple Fourier Series. Application to Numerical Solution of Ito SDEs and Semilinear SPDEs”, 2024, 1–1152, arXiv: 2003.14184
Dmitriy F. Kuznetsov, “A new approach to the series expansion of iterated Stratonovich stochastic integrals with respect to components of the multidimensional Wiener process. The case of arbitrary complete orthonormal systems in Hilbert space”, Electronic Journal “Differential Equations and Control Processes”, 2024, no. 2, 73–170Publication PagePDF
2.
Dmitriy F. Kuznetsov, “A new approach to the series expansion of iterated Stratonovich stochastic integrals with respect to components of a multidimensional Wiener process. The case of arbitrary complete orthonormal systems in Hilbert space. II”, Electronic Journal “Differential Equations and Control Processes”, 2024, no. 4, 104–178 (to appear)
3.
Dmitriy F. Kuznetsov, “Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals: Method of Generalized Multiple Fourier Series. Application to Numerical Integration of Ito SDEs and Semilinear SPDEs (Third Edition)”, Electronic Journal “Differential Equations and Control Processes”, 2023, no. 1, A.1-A.947Publication PagePDF
D. F. Kuznetsov, “Recent results on a new approach to series expansion of iterated Stratonovich stochastic
integrals of arbitrary multiplicity with respect to components of a multidimensional
Wiener process”, 8th International Conference on Stochastic Methods (ICSM-8) (Divnomorskoe, Russia, June 1–8, 2023), Theory of Probability and its Applications, 68, no. 4, 2023, 688–688PDF
Dmitriy F. Kuznetsov, “A new proof of the series expansion of iterated Itô stochastic integrals with respect to the components of a multidimensional Wiener process based on generalized multiple Fourier series and Hermite polynomials”, Electronic Journal “Differential Equations and Control Processes”, 2023, no. 4, 67-124Publication PagePDF
6.
Dmitriy F. Kuznetsov, “A new approach to the series expansion of iterated Stratonovich stochastic integrals of arbitrary multiplicity with respect to components of the multidimensional Wiener process”, Electronic Journal “Differential Equations and Control Processes”, 2022, no. 2, 83–186Publication PagePDF
7.
D. F. Kuznetsov, “A new approach to series expansion of iterated Stratonovich stochastic
integrals of arbitrary multiplicity with respect to components of a multidimensional
Wiener process”, 7th International Conference on Stochastic Methods (ICSM-7) (Divnomorskoe, Russia, June 2–9, 2022), Theory of Probability and its Applications, 67, no. 4, 2023, 665–666PDF
8.
Dmitriy F. Kuznetsov, “A new approach to the series expansion of iterated Stratonovich stochastic integrals of arbitrary multiplicity with respect to components of the multidimensional Wiener process. II”, Electronic Journal “Differential Equations and Control Processes”, 2022, no. 4, 135–194Publication PagePDF
9.
Kuznetsov D. F., Kuznetsov M. D., “Optimization of the mean-square approximation procedures
for iterated Stratonovich stochastic integrals of multiplicities
1 to 3 with respect to components of the multi-dimensional
Wiener process based on Multiple Fourier–Legendre series”, MATEC Web of Conferences, 362 (2022), article id: 01014 , 10 pp. PDF
10.
Mikhail D. Kuznetsov, Dmitriy F. Kuznetsov, “SDE–MATH: A software package for the implementation
of strong high-order numerical methods for Ito SDEs with multidimensional non-commutative noise based on multiple Fourier–Legendre series”, Electronic Journal “Differential Equations and Control Processes”, 2021, no. 1, 93-422Publication PagePDF
11.
Kuznetsov D. F., Kuznetsov M. D., “Mean-square approximation of iterated stochastic integrals from strong exponential Milstein and Wagner-Platen methods for non-commutative semilinear SPDEs based on multiple Fourier-Legendre series”, In: Recent Developments in Stochastic Methods and Applications. ICSM-5 2020, Springer Proceedings in Mathematics & Statistics, ISBN 978-3-030-83266-7, 371, eds. Shiryaev A.N., Samouylov K.E, Kozyrev D.V., Springer, Cham, 2021, 17–32Publication Page
12.
Kuznetsov D. F., Kuznetsov M. D., “Optimization of the mean-square approximation procedures for iterated Ito stochastic integrals based on multiple Fourier-Legendre series”, Journal of Physics: Conference Series, 1925 (2021), article id: 012010 , 12 pp. PDF
Kuznetsov D. F., “Mean-Square Approximation of Iterated Ito and Stratonovich Stochastic Integrals: Method of Generalized Multiple Fourier Series. Application to Numerical Integration of Ito SDEs and Semilinear SPDEs. 2nd Edition”, Electronic Journal “Differential Equations and Control Processes”, 2021, no. 4, A.1–A.788Publication PagePDF
14.
D. F. Kuznetsov, “Explicit one-step numerical method with the strong convergence order of 2.5 for Ito stochastic differential equations with a multi-dimensional nonadditive noise based on the Taylor–Stratonovich expansion”, Computational Mathematics and Mathematical Physics, 60:3 (2020), 379–389
15.
D. F. Kuznetsov, “Strong approximation of iterated Ito and Stratonovich stochastic integrals”, 4th International Conference on Stochastic Methods (ICSM-4) (Divnomorskoe, Russia, June 2–9, 2019), Theory of Probability and its Applications, 65, no. 1, 2020, 141–142PDF
16.
Dmitriy F. Kuznetsov, “The proof of convergence with probability 1 in the method of expansion of iterated Ito stochastic integrals based on generalized multiple Fourier series”, Electronic Journal "Differential Equations and Control Processes, 2020, no. 2, 89–117Publication PagePDF
17.
Dmitriy F. Kuznetsov, “Application of multiple Fourier–Legendre series to implementation of strong exponential Milstein and Wagner–Platen methods for non-commutative semilinear stochastic partial differential equations”, Electronic Journal "Differential Equations and Control Processes, 2020, no. 3, 129–162Publication PagePDF
18.
Dmitriy F. Kuznetsov, “Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series. Application to Numerical Solution of Ito SDEs and Semilinear SPDEs. 1st Edition”, Electronic Journal “Differential Equations and Control Processes”, 2020, no. 4, A.1–A.606Publication PagePDF
19.
Dmitriy F. Kuznetsov, “Application of multiple Fourier–Legendre series to the implementation of strong exponential Milstein and Wagner–Platen methods for non-commutative semilinear SPDEs”, Proceedings of the XIII International Conference on Applied Mathematics and Mechanics in the Aerospace Industry (AMMAI-2020). (6-13 September, 2020, Alushta, Crimea), MAI, Moskva, 2020, 451–453PDF
20.
Kuznetsov D.F., Kuznetsov M.D., “A software package for Implementation of strong numerical methods of convergence orders 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 for Ito SDEs with non-commutative multi-dimensional noise”, 19th International Conference “Aviation and Cosmonautics” (AviaSpace-2020). Abstracts (Moscow, MAI, 23-27 November, 2020), Publishing house “Pero”, 2020, 569–570PDF
21.
Dmitriy F. Kuznetsov, “Application of multiple Fourier-Legendre series to the implementation of strong exponential Milstein and Wagner-Platen methods for non-commutative semilinear SPDEs with nonlinear multiplicative trace class noise”, The 5th International Conference on Stochastic Methods (ICSM-5). Proceedings (Russia, Moscow, November 23–27, 2020), RUDN Press, 2020, 88–92PDF
22.
D. F. Kuznetsov, “On numerical modeling of the multidimentional dynamic systems under random perturbations with the 2.5 order of strong convergence”, Automation and Remote Control, 80:5 (2019), 867–881
23.
D. F. Kuznetsov, “Expansion of iterated Stratonovich stochastic integrals, based on generalized multiple Fourier series”, Ufa Mathematical Journal, 11:4 (2019), 49–77PDF
24.
D. F. Kuznetsov, “A comparative analysis of efficiency of using the Legendre polynomials and trigonometric functions for the numerical solution of Ito stochastic differential equations”, Computational Mathematics and Mathematical Physics, 59:8 (2019), 1236–1250
25.
Dmitriy F. Kuznetsov, “Application of the Fourier method for the numerical solution of stochastic differential equations”, 2nd International Conference on Mathematical Modeling in Applied Sciences. Book of Abstracts. (Belgorod, Russia, August 20–24, 2019), 2019, 236–237PDF
26.
Dmitriy F. Kuznetsov, “Application of the method of approximation of iterated stochastic Ito integrals based on generalized multiple Fourier series to the high-order strong numerical methods for non-commutative semilinear stochastic partial differential equations”, Electronic Journal "Differential Equations and Control Processes, 2019, no. 3, 18–62 (Published online) Publication PagePDF
27.
D. F. Kuznetsov, “Approksimatsiya povtornykh stokhasticheskikh integralov Ito vtoroi kratnosti, osnovannaya na razlozhenii vinerovskogo protsessa s pomoschyu mnogochlenov Lezhandra i trigonometricheskikh funktsii”, Elektronnyi zhurnal "Differentsialnye uravneniya i protsessy upravleniya, 2019, no. 4, 32–52Publication PagePDF
28.
D. F. Kuznetsov, “Development and application of the Fourier method for the numerical solution of Ito stochastic differential equations”, Computational Mathematics and Mathematical Physics, 58:7 (2018), 1058–1070
29.
D. F. Kuznetsov, “Razlozhenie povtornykh stokhasticheskikh integralov Stratonovicha vtoroi kratnosti, osnovannoe na dvoinykh ryadakh Fure-Lezhandra, summiruemykh po Prinskheimu”, Elektronnyi zhurnal "Differentsialnye uravneniya i protsessy upravleniya, 2018, no. 1, 1–34 (Published online) Publication PagePDF
30.
D. F. Kuznetsov, “On numerical modeling of the multidimensional dynamic systems under random perturbations with the 1.5 and 2.0 orders of strong convergence”, Automation and Remote Control, 79:7 (2018), 1240–1254
31.
D. F. Kuznetsov, “Stokhasticheskie differentsialnye uravneniya: teoriya i praktika chislennogo resheniya. S programmami v srede MATLAB (6-e izdanie)”, Elektronnyi zhurnal “Differentsialnye uravneniya i protsessy upravleniya”, 2018, no. 4, A.1–A.1073 (Published online) Publication PagePDF, dopolnitelnaya ssylka: PDF
32.
Dmitriy F. Kuznetsov, “Strong approximation of multiple Ito and Stratonovich stochastic integrals”, International Conference on Mathematical Modeling in Applied Sciences. Abstracts Book (St.-Petersburg, Russia, July 24–28, 2017), Polytechnic University Publishing House, 2017, 141–142PDF
33.
D. F. Kuznetsov, “Stokhasticheskie differentsialnye uravneniya: teoriya i praktika chislennogo resheniya. S programmami v srede MATLAB (5-e izdanie)”, Elektronnyi zhurnal "Differentsialnye uravneniya i protsessy upravleniya, 2017, no. 2, A.1–A.1000 (Published online) Publication PagePDF
34.
Dmitriy F. Kuznetsov, “Multiple Ito and Stratonovich Stochastic Integrals: Fourier-Legendre and Trigonometric Expansions, Approximations, Formulas”, Electronic Journal "Differential Equations and Control Processes, 2017, no. 1, A.1–A.385 (Published online) Publication PagePDF
35.
D. F. Kuznetsov, “Povtornye stokhasticheskie integraly Ito i Stratonovicha i kratnye ryady Fure”, Elektronnyi zhurnal "Differentsialnye uravneniya i protsessy upravleniya, 2010, no. 3, A.1–A.257 (Published online) Publication PagePDF
36.
D. F. Kuznetsov, “Stokhasticheskie differentsialnye uravneniya: teoriya i praktika chislennogo resheniya”, Elektronnyi zhurnal "Differentsialnye uravneniya i protsessy upravleniya, 2008, no. 1, A.1–A.29 (Published online) Publication PagePDF
37.
Kuznetsov D. F, “The three-step strong numerical methods of the orders of accuracy 1.0 and 1.5 for Ito stochastic differential equations”, Journal of Automation and Information Sciences (Begell House), 2002, 34 (Issue 12), 14 pp.PDF
38.
Kuznetsov D. F, “Combined method of strong approximation of multiple stochastic integrals”, Journal of Automation and Information Sciences (Begell House), 2002, 34 (Issue 8), 6 pp.PDF
39.
D. F. Kuznetsov, “New representations of the Taylor–Stratonovich expansion”, Journal of Mathematical Sciences (New York), 118:6 (2003), 5586–5596PDF
40.
D. F. Kuznetsov, “New representations of explicit one-step numerical methods for jump-diffusion stochastic differential equations”, Computational Mathematics and Mathematical Physics, 41:6 (2001), 874–888PDF
41.
Kuznetsov D. F, “Finite-difference strong numerical methods of order 1.5 and 2.0 for stochastic differential Ito equations with nonadditive multidimensional noise”, Journal of Automation and Information Sciences (Begell House), 2001, 33 (Issue 5–8), 13 pp.PDF
42.
Kuznetsov D. F, “Mean square approximation of solutions of stochastic differential equations using Legendres polynomials”, Journal of Automation and Information Sciences (Begell House), 2000, 32 (Issue 12), 69–86PDF
43.
D. F. Kuznetsov, “Slabyi chislennyi metod poryadka 4.0 dlya stokhasticheskikh differentsialnykh uravnenii Ito”, Vestnik molodykh uchenykh. Seriya “Prikladnaya matematika i mekhanika”, 2000, no. 4, 47–52PDF
44.
D. F. Kuznetsov, “Expansion of the Stratonovich multiple stochastic integrals based on the Fourier multiple series”, Journal of Mathematical Sciences (New York), 109:6 (2002), 2148–2165PDF
45.
Kuznetsov D. F, “Application of approximation methods of iterated Stratonovich and Ito stochastic integrals to numerical simulation of controlled stochastic systems”, Journal of Automation and Information Sciences (Begell House), 1999, 31 (Issue 10), 70–83
46.
D. F. Kuznetsov, “K probleme chislennogo modelirovaniya stokhasticheskikh sistem”, Vestnik molodykh uchenykh. Seriya “Prikladnaya matematika i mekhanika”, 1999, no. 1, 20–32
47.
D. F. Kuznetsov, “Nekotorye voprosy teorii chislennogo resheniya stokhasticheskikh differentsialnykh uranenii Ito”, Elektronnyi zhurnal "Differentsialnye uravneniya i protsessy upravleniya, 1998, no. 1, 66–367 (Published online) Publication PagePDF
48.
O. Yu. Kulchitskii, D. F. Kuznetsov, “Chislennoe modelirovanie reshenii stokhasticheskikh sistem lineinykh statsionarnykh differentsialnykh uravnenii”, Elektronnyi zhurnal "Differentsialnye uravneniya i protsessy upravleniya, 1998, no. 1, 41–65 (Published online) Publication PagePDF
49.
D. F. Kuznetsov, “Analiticheskie formuly dlya vychisleniya stokhasticheskikh integralov”, Elektronnyi zhurnal "Differentsialnye uravneniya i protsessy upravleniya, 1998, no. 4, 18–28Publication PagePDF
50.
D. F. Kuznetsov, “Metod razlozheniya i approksimatsii povtornykh stokhasticheskikh integralov Stratonovicha, osnovannyi na kratnykh ryadakh Fure po polnym ortonormirovannym sistemam funktsii i ego primenenie k chislennomu resheniyu stokhasticheskikh differentsialnykh uravnenii Ito”, Proceedings of the International Workshop “Tools for Mathematical Modelling” (St.-Petersburg, 3–6 December, 1997), Izdatelstvo SPbGTU, S.-Peterburg, 1998, 135–160
51.
Kulchitskiy O. Yu., Kuznetsov D. F., “Numerical methods of modeling control systems described by stochastic differential equations”, Journal of Automation and Information Sciences (Begell House), 1999, 31 (Issues 1-3), 47–61
52.
Dmitriy F. Kuznetsov, “Method of expansion and approximation of repeated stochastic Stratonovich integrals, which is based on multiple Fourier series on full orthonormal systems”, Abstracts of communications. International Conference “Asymptotic Methods in Probability and Mathematical Statistics” dedicated to the 50-th anniversary of the chair of probability and statistics in St. Petersburg University (St.-Petersburg, 24–28 June, 1998), 1998, 146–149
53.
D. F. Kuznetsov, “Ispolzovanie razlichnykh polnykh ortonormirovannykh sistem funktsii dlya chislennogo resheniya stokhasticheskikh differentsialnykh uravnenii Ito”, The 2nd International Scientific and Practical Conference “Differential Equations and Applications”, Abstracts (St.-Petersburg, June 15–20, 1998), Izdatelstvo SPbGTU, S.-Peterburg, 1998, 128–129
54.
D. F. Kuznetsov, “Metod razlozheniya i approksimatsii povtornykh stokhasticheskikh integralov Stratonovicha, osnovannyi na kratnykh ryadakh Fure po polnym ortonormirovannym sistemam funktsii”, The 2nd International Scientific and Practical Conference “Differential Equations and Applications”, Abstracts (St.-Petersburg, June 15–20, 1998), Izdatelstvo SPbGTU, S.-Peterburg, 1998, 130–131
55.
Oleg Yu. Kulchitski, Dmitriy F. Kuznetsov, “Analitical formulas for calculating of stochastic integrals”, Abstracts of communications. International Conference “Asymptotic Methods in Probability and Mathematical Statistics” dedicated to the 50-th anniversary of the chair of probability and statistics in St. Petersburg University (St.-Petersburg, 24–28 June, 1998), 1998, 140–145
56.
O. Yu. Kulchitski, D. F. Kuznetsov, “The unified Taylor-Ito expansion”, Journal of Mathematical Sciences (New York), 99:2 (2000), 1130–1140PDF
57.
D. F. Kuznetsov, “Metod razlozheniya i approksimatsii povtornykh stokhasticheskikh integralov Stratonovicha, osnovannyi na kratnykh ryadakh Fure po polnym ortonormirovannym sistemam funktsii”, Elektronnyi zhurnal "Differentsialnye uravneniya i protsessy upravleniya, 1997, no. 1, 18–77 (Published online) Publication PagePDF
58.
O. Yu. Kulchitskii, D. F. Kuznetsov, “Unifitsirovannoe razlozhenie Teilora - Ito”, Elektronnyi zhurnal "Differentsialnye uravneniya i protsessy upravleniya, 1997, no. 1, 1–17 (Published online) Publication PagePDF
59.
Kulchitskiy O. Yu., Kuznetsov D. F., “Numerical simulation of nonlinear oscillatory systems under stochastic perturbations”, Proceedings of the 1st International Conference “Control of Oscillations and Chaos” COC97 (St.-Petersburg, 27–29 August, 1997), Vol. 2, eds. F.L. Chernousko, A.L. Fradkov, 1997, 242–245
60.
O. Yu. Kulchitsky, D. F. Kuznetsov, “Numerical simulation of stochastic control systems”, Proceedings of the International Conference on Informatics and Control ICI&C97 (St.-Petersburg, 9–13 June, 1997), Vol. 1, Published by St.-Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences (SPIIRAS), 1997, 368–376
61.
O. Yu. Kulchitskii, D. F. Kuznetsov, “Biblioteka programm stokhasticheskogo modelirovaniya lineinykh upravlyaemykh sistem v srede MATLAB”, Mezhdunarodnaya konferentsiya “Sredstva matematicheskogo modelirovaniya” (S.-Peterburg, 3–6 dekabrya, 1997), Izdatelstvo SPbGTU, S.-Peterburg, 1997, 97–98
62.
O. Yu. Kulchitskii, D. F. Kuznetsov, “Chislennye Metody modelirovaniya reshenii stokhasticheskikh differentsialnykh uravnenii Ito”, The 1st International Scientific and Practical Conference “Differential Equations and Applications”, Abstracts (St.-Petersburg, 3–5 December, 1996), Izdatelstvo SPbGTU, S.-Peterburg, 1996, 135–136
63.
O. Yu. Kulchitsky, D. F. Kuznetsov, “The Taylor-Ito expansion of Ito processes, which are generated by solution of stochastic differential Ito equations”, The 1st International Scientific and Practical Conference “Differential Equations and Applications”, Abstracts (St.-Petersburg, 3–5 December, 1996), Izdatelstvo SPbGTU, S.-Peterburg, 1996, 137–138
64.
D. F. Kuznetsov, “The finte-difference methods for stochastic differential Ito equations”, The 1st International Scientific and Practical Conference “Differential Equations and Application”, Abstracts (St.-Petersburg, 3–5 December, 1996), Izdatelstvo SPbGTU, S.-Peterburg, 1996, 123–124
65.
O. Yu. Kulchitskii, D. F. Kuznetsov, “Chislennoe modelirovanie stokhasticheskikh sistem upravleniya, opisyvaemykh sistemami differentsialnykh uravnenii Ito”, Tretya ukrainskaya konferentsiya po avtomaticheskomu upravleniyu “Avtomatika 96” (Sevastopol, 9–14 sentyabrya, 1996), T.1, Izdatelstvo Sevastopolskogo tekhnicheskogo universiteta, Sevastopol, 1996, 162–163
66.
O. Yu. Kulchitskii, D. F. Kuznetsov, “O probleme korrektnogo modelirovaniya reshenii sistem stokhasticheskikh differentsialnykh uravnenii Ito”, Mekhanika i protsessy upravleniya. Sbornik nauchnykh trudov. “Trudy SPbGTU”, # 458, Izdatelstvo SPbGTU, S.-Peterburg, 1995, 162–168
Books
67.
Dmitriy F. Kuznetsov, New Theory of the Mean-Square Approximation of Iterated Ito and Stratonovich Stochastic Integrals: Method of Generalized Multiple Fourier Series. Application to Numerical Integration of Ito SDEs and semilinear SPDEs, 28 arXiv.org articles, 2022 (Published online) , 2131 pp. PDF
68.
Dmitriy F. Kuznetsov, Multiple Ito and Stratonovich Stochastic Integrals: Approximations, Properties, Formulas, Polytechnical University Publishing House, S.-Petersburg, 2013 , 382 pp., ISBN 978-5-7422-3973-4 PDF
69.
Dmitrii Kuznetsov, Chislennoe integrirovanie stokhasticheskikh differentsialnykh uravnenii Ito. S programmami v srede MatLab, Lambert Academic Publishing, Saarbrucken, 2012 , 692 pp., ISBN 978-3-8484-8214-6
70.
Dmitriy F. Kuznetsov, Approximation of Multiple Ito and Stratonovich Stochastic Integrals. Multiple Fourier Series Approach, Lambert Academic Publishing, Saarbrücken, 2012 , 409 pp., ISBN 978-3-8484-3855-6 PDF
71.
Dmitriy F. Kuznetsov, Strong Approximation of Multiple Ito and Stratonovich Stochastic Integrals: Multiple Fourier Series Approach. 2nd edition, Polytechnical University Publishing House, St.-Petersburg, 2011 , 284 pp., ISBN 978-5-7422-3162-2 PDF
72.
Dmitriy F. Kuznetsov, Strong Approximation of Multiple Ito and Stratonovich Stochastic Integrals: Multiple Fourier Series Approach. 1st edition, Polytechnical University Publishing House, St.-Petersburg, 2011 , 250 pp., ISBN 978-5-7422-2988-9 PDF
73.
D. F. Kuznetsov, Stokhasticheskie differentsialnye uravneniya: teoriya i praktika chislennogo resheniya. S programmami v srede MatLab. 4-e izdanie, Izdatelstvo Politekhnicheskogo universiteta, S.-Peterburg, 2010 , XXX+786 pp., ISBN 978-5-7422-2448-8 PDF
74.
D. F. Kuznetsov, Stokhasticheskie differentsialnye uravneniya: teoriya i praktika chislennogo resheniya. S programmami v srede MatLab. 3-e izdanie, Izdatelstvo Politekhnicheskogo universiteta, S.-Peterburg, 2009 , XXXIV+768 pp., ISBN 978-5-7422-2132-6 PDF
75.
D. F. Kuznetsov, Stokhasticheskie differentsialnye uravneniya: teoriya i praktika chislennogo resheniya. S programmami v srede MatLab. 2-e izdanie, Izdatelstvo Politekhnicheskogo universiteta, S.-Peterburg, 2007 , XXXII+770 pp., ISBN 5-7422-1439-1 PDF
76.
D. F. Kuznetsov, Stokhasticheskie differentsialnye uravneniya: teoriya i praktika chislennogo resheniya. 1-e izdanie, Izdatelstvo Politekhnicheskogo universiteta, S.-Peterburg, 2007 , 778 pp., ISBN 5-7422-1394-8 PDF
77.
D. F. Kuznetsov, Chislennoe integrirovanie stokhasticheskikh differentsialnykh uravnenii. 2, Izdatelstvo Politekhnicheskogo universiteta, S.-Peterburg, 2006 , 764 pp., ISBN 5-7422-1191-0 PDF
78.
D. F. Kuznetsov, Chislennoe integrirovanie stokhasticheskikh differentsialnykh uravnenii, Izdatelstvo S.-Peterburgskogo gosudarstvennogo universiteta, S.-Peterburg, 2001 , 712 pp., ISBN: 5-288-02462-6
79.
D. F. Kuznetsov, Chislennoe modelirovanie stokhasticheskikh differentsialnykh uravnenii i stokhasticheskikh integralov, Nauka, S.-Peterburg, 1999 , 460 pp., ISBN 5-02-024905-x
80.
D. F. Kuznetsov, Nekotorye voprosy teorii chislennogo resheniya stokhasticheskikh differentsialnykh uravnenii Ito, Izdatelstvo SPbGTU, S.-Peterburg, 1998 , 204 pp., ISBN 5-7422-0045-5
Thesis
81.
D. F. Kuznetsov, Chislennoe integrirovanie stokhasticheskikh differentsialnykh uravnenii, diss. … dokt. fiz.-matem. nauk, S.-Peterburg, 2002 , 490 pp.
82.
D. F. Kuznetsov, Chislennoe integrirovanie stokhasticheskikh differentsialnykh uravnenii, Avtoreferat diss. … dokt. fiz.-matem. nauk, Izdatelstvo SPbGTU, S.-Peterburg, 2002 , 34 pp.
83.
D. F. Kuznetsov, Metody chislennogo modelirovaniya reshenii sistem stokhasticheskikh differentsialnykh uravnenii Ito v zadachakh mekhaniki, Avtoreferat diss. … kand. fiz.-matem. nauk, Izdatelstvo SPbGTU, S.-Peterburg, 1996 , 19 pp.
84.
D. F. Kuznetsov, Metody chislennogo modelirovaniya reshenii sistem stokhasticheskikh differentsialnykh uravnenii Ito v zadachakh mekhaniki, diss. … kand. fiz.-matem. nauk, S.-Peterburg, 1996 , 248 pp.
Proceedings
85.
D. F. Kuznetsov, “Expansions of iterated Itô and Stratonovich stochastic
integrals. The case of arbitrary CONS in $L_2[t, T ]$”, 9th International Conference on Stochastic Methods (ICSM-9) (Divnomorskoe, Russia, June 2–8, 2024), Theory of Probability and its Applications, 69, no. 4, 2024 (to appear)
Preprints
86.
D. F. Kuznetsov, Dva novykh predstavleniya razlozheniya Teilora-Stratonovicha, Preprint, Izdatelstvo SPbGTU, S.-Peterburg, 1999 , 13 pp. PDF
87.
D. F. Kuznetsov, Zamena poryadka integrirovaniya v povtornykh stokhasticheskikh integralakh po martingalu, Preprint, Izdatelstvo SPbGTU, S.-Peterburg, 1999 , 11 pp. PDF
88.
D. F. Kuznetsov, Primenenie polinomov Lezhandra k silnoi approksimatsii reshenii stokhasticheskikh differentsialnykh uravnenii, Preprint, Izdatelstvo SPbGTU, S.-Peterburg, 1999 , 17 pp. PDF
89.
D. F. Kuznetsov, Teoremy o zamene poryadka integrirovaniya v povtornykh stokhasticheskikh integralakh, Dep. v VINITI, 3607-B97, 1997 , 31 pp.
90.
D. F. Kuznetsov, Teoreticheskoe obosnovanie metoda razlozheniya i approksimatsii povtornykh stokhasticheskikh integralov Stratonovicha, osnovannogo na kratnykh ryadakh Fure po trigonometricheskim i sfericheskim funktsiyam, Dep. v VINITI. 3608-V97, 1997 , 27 pp.
91.
D. F. Kuznetsov, Konechno-raznostnyi metod chislennogo integrirovaniya stokhasticheskikh differentsialnykh uravnenii Ito s lokalnoi srednekvadraticheskoi oshibkoi tretego poryadka malosti, Dep. v VINITI. 3510-B96, 1996 , 27 pp.
92.
D. F. Kuznetsov, Konechno-raznostnaya approksimatsiya razlozheniya Teilora-Ito i konechno-raznostnye metody chislennogo integrirovaniya stokhasticheskikh differentsialnykh uravnenii Ito, Dep. v VINITI. 3509-B96, 1996 , 24 pp.
93.
O. Yu. Kulchitskii, D. F. Kuznetsov, Obobschenie razlozheniya Teilora na klass differentsiruemykh po Ito sluchainykh protsessov, Dep. v VINITI. 3508-B96, 1996 , 24 pp.
94.
O. Yu. Kulchitskii, D. F. Kuznetsov, Povtornye stokhasticheskie integraly i ikh svoistva, Dep. v VINITI. 3506-B96, 1996 , 29 pp.
95.
O. Yu. Kulchitskii, D. F. Kuznetsov, Obobschenie razlozheniya Teilora na klass sluchainykh protsessov, porozhdennykh resheniyami stokhasticheskikh differentsialnykh uravnenii Ito, Dep. v VINITI. 3507-B96, 1996 , 25 pp.
96.
O. Yu. Kulchitskii, D. F. Kuznetsov, Metody chislennogo integrirovaniya nelineinykh stokhasticheskikh differentsialnykh uravnenii Ito, osnovannye na razlozhenii Teilora-Ito, Dep. v VINITI. 0127-V96, 1996 , 24 pp.
97.
O. Yu. Kulchitskii, D. F. Kuznetsov, Konechno-raznostnye metody chislennogo integrirovaniya nelineinykh stokhasticheskikh differentsialnykh uravnenii Ito, Dep. v VINITI. 0128-V96, 1996 , 25 pp.
98.
O. Yu. Kulchitskii, D. F. Kuznetsov, Approksimatsiya kratnykh stokhasticheskikh integralov Ito, Dep. v VINITI, 1678-B94, 1994 , 42 pp.
99.
O. Yu. Kulchitskii, D. F. Kuznetsov, Razlozhenie protsessov Ito v ryad Teilora - Ito v okrestnosti fiksirovannogo momenta vremeni, Dep. v VINITI, 2637-B93, 1993 , 26 pp.
ArXiv
100.
Dmitriy F. Kuznetsov, Expansions of iterated Stratonovich stochastic integrals
based on generalized multiple Fourier series: multiplicities 1 to 6 and beyond, 2024 (Published online) , 355 pp., arXiv: 1712.09516
101.
Dmitriy F. Kuznetsov, The hypotheses on expansions of iterated Stratonovich stochastic integrals of arbitrary multiplicity and their partial proof, 2024 (Published online) , 281 pp., arXiv: 1801.03195
102.
Dmitriy F. Kuznetsov, Expansion of iterated Stratonovich stochastic integrals of fifth and sixth multiplicity based on generalized multiple Fourier series, 2024 (Published online) , 270 pp., arXiv: 1802.00643
103.
Dmitriy F. Kuznetsov, Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals: Method of Generalized Multiple Fourier Series. Application to Numerical Solution of Ito SDEs and Semilinear SPDEs, 2024 (Published online) , 1152 pp., arXiv: 2003.14184
104.
Dmitriy F. Kuznetsov, Expansion of iterated Ito stochastic integrals of arbitrary multiplicity based on generalized multiple Fourier series converging in the mean, 2023 (Published online) , 144 pp., arXiv: 1712.09746
105.
Dmitriy F. Kuznetsov, A new proof of the expansion of iterated Ito stochastic integrals with respect to the components of a multidimensional Wiener process based on generalized multiple Fourier series and Hermite polynomials, 2023 (Published online) , 58 pp., arXiv: 2307.11006
106.
Dmitriy F. Kuznetsov, Four new forms of the Taylor-Ito and Taylor-Stratonovich expansions and its application to the high-order strong numerical methods for Ito stochastic differential equations, 2020 (Published online) , 90 pp., arXiv: 2001.10192
107.
Dmitriy F. Kuznetsov, The proof of convergence with probability 1 in the method of expansion of iterated Ito stochastic integrals based on generalized multiple Fourier series, 2020 , 33 pp., arXiv: 2006.16040
108.
Mikhail D. Kuznetsov, Dmitriy F. Kuznetsov, Implementation of strong numerical methods of orders 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 for Ito SDEs with non-commutative noise based on the unified Taylor-Ito and Taylor-Stratonovich expansions and multiple Fourier-Legendre series, 2020 , 343 pp., arXiv: 2009.14011
109.
Mikhail D. Kuznetsov, Dmitriy F. Kuznetsov, Optimization of the mean-square approximation procedures for iterated Ito stochastic integrals of multiplicities 1 to 5 from the unified Taylor-Ito expansion based on multiple Fourier-Legendre series., 2020 , 63 pp., arXiv: 2010.13564
110.
Dmitriy F. Kuznetsov, Comparative analysis of the efficiency of application of Legendre polynomials and trigonometric functions to the numerical integration of Ito stochastic differential equations, 2019 (Published online) , 40 pp., arXiv: 1901.02345
111.
Dmitriy F. Kuznetsov, Application of the method of approximation of iterated stochastic Ito integrals based on generalized multiple Fourier series to the high-order strong numerical methods for non-commutative semilinear stochastic partial differential equations, 2019 (Published online) , 41 pp., arXiv: 1905.03724
112.
Dmitriy F. Kuznetsov, New simple method of expansion of iterated Ito stochastic integrals of multiplicity 2 based on expansion of the Brownian motion using Legendre polynomials and trigonometric functions, 2019 (Published online) , 23 pp., arXiv: 1807.00409
113.
Dmitriy F. Kuznetsov, Application of multiple Fourier–Legendre series to implementation of strong exponential Milstein and Wagner–Platen methods for non-commutative semilinear stochastic partial differential equations, 2019 , 32 pp., arXiv: 1912.02612
114.
Dmitriy F. Kuznetsov, Exact calculation of the mean-square error in the method of approximation of iterated Ito stochastic integrals based on generalized multiple Fourier series, 2018 (Published online) , 71 pp., arXiv: 1801.01079
115.
Dmitriy F. Kuznetsov, Expansion of iterated Stratonovich stochastic integrals of arbitrary multiplicity based on generalized iterated Fourier series converging pointwise, 2018 (Published online) , 80 pp., arXiv: 1801.00784
116.
Dmitriy F. Kuznetsov, Expansion of iterated Stratonovich stochastic integrals of multiplicity 3 based on generalized multiple Fourier series converging in the mean: general case of series summation, 2018 (Published online) , 66 pp., arXiv: 1801.01564
117.
Dmitriy F. Kuznetsov, Expansion of iterated Stratonovich stochastic integrals of multiplicity 2 based on double Fourier-Legendre series summarized by Pringsheim method, 2018 (Published online) , 49 pp., arXiv: 1801.01962
118.
Dmitriy F. Kuznetsov, Integration order replacement technique for iterated Ito stochastic integrals and iterated stochastic integrals with respect to martingales, 2018 (Published online) , 28 pp., arXiv: 1801.04634
119.
Dmitriy F. Kuznetsov, Expansions of iterated Stratonovich stochastic integrals of multiplicities 1 to 4. Combained approach based on generalized multiple and iterated Fourier series, 2018 (Published online) , 46 pp., arXiv: 1801.05654
120.
Dmitriy F. Kuznetsov, Expansion of iterated stochastic integrals with respect to martingale Poisson measures and with respect to martingales based on generalized multiple Fourier series, 2018 (Published online) , 40 pp., arXiv: 1801.06501
121.
Dmitriy F. Kuznetsov, Expansion of iterated Stratonovich stochastic integrals of multiplicity 2. Combined approach based on generalized multiple and iterated Fourier series, 2018 (Published online) , 20 pp., arXiv: 1801.07248
122.
Dmitriy F. Kuznetsov, Expansions of iterated Stratonovich stochastic integrals from the Taylor-Stratonovich expansion based on multiple trigonometric Fourier series. Comparison with the Milstein expansion, 2018 (Published online) , 36 pp., arXiv: 1801.08862
123.
Dmitriy F. Kuznetsov, To numerical modeling with strong orders 1.0, 1.5, and 2.0 of convergence for multidimensional dynamical systems with random disturbances, 2018 (Published online) , 29 pp., arXiv: 1802.00888
124.
Dmitriy F. Kuznetsov, Explicit one-step strong numerical methods of orders 2.0 and 2.5 for Ito stochastic differential equations based on the unified Taylor-Ito and Taylor-Stratonovich expansions, 2018 (Published online) , 37 pp., arXiv: 1802.04844
125.
Dmitriy F. Kuznetsov, Numerical simulation of 2.5-set of iterated Ito stochastic integrals of multiplicities 1 to 5 from the Taylor-Ito expansion, 2018 (Published online) , 29 pp., arXiv: 1805.12527
126.
Dmitriy F. Kuznetsov, Numerical simulation of 2.5-set of iterated Stratonovich stochastic integrals of multiplicities 1 to 5 from the Taylor-Stratonovich expansion, 2018 (Published online) , 29 pp., arXiv: 1806.10705
127.
Dmitriy F. Kuznetsov, Strong numerical methods of orders 2.0, 2.5, and 3.0 for Ito stochastic differential equations based on the unified stochastic Taylor expansions and multiple Fourier-Legendre series, 2018 (Published online) , 44 pp., arXiv: 1807.02190
128.
Dmitriy F. Kuznetsov, Development and application of the Fourier method to the mean-square approximation of iterated Ito and Stratonovich stochastic integrals, 2017 (Published online) , 58 pp., arXiv: 1712.08991
129.
Dmitriy F. Kuznetsov, Mean-square approximation of iterated Ito and Stratonovich stochastic integrals of multiplicities 1 to 6 from the Taylor-Ito and Taylor-Stratonovich expansions using Legendre polynomials, 2017 (Published online) , 106 pp., arXiv: 1801.00231
Popular science or education materials
130.
D. F. Kuznetsov, Matematika. Teoriya funktsii kompleksnoi peremennoi, Uchebnoe posobie, Izdatelstvo Politekhnicheskogo universiteta, S.-Peterburg, 2006 , 124 pp.
Miscellaneous
131.
Dmitriy F. Kuznetsov, Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals, The 4th International Conference on Stochastic Methods (ICSM-4), June 2–9, 2019, Divnomorskoe, Russia, Presentation PDF
132.
Dmitriy F. Kuznetsov, Application of multiple Fourier–Legendre series to the implementation of strong exponential Milstein and Wagner–Platen methods for non-commutative semilinear SPDEs, The 5th International Conference On Stochastic Methods (ICSM-5), November 23-27, 2020, Moscow, Russia, Presentation PDF
133.
Dmitriy F. Kuznetsov., A new approach to the series expansion of iterated Stratonovich stochastic integrals of arbitrary multiplicity with respect to components of the multidimensional Wiener process., ICSM-7, 2-9 June, 2022, Divnomorskoe, Presentation PDF
134.
Dmitriy F. Kuznetsov., Recent results on a new approach to the series
expansion of iterated Stratonovich stochastic integrals
with respect to components of a multidimensional
Wiener process, ICSM-8, 2-8 June, 2023, Divnomorskoe, Presentation PDF
135.
Dmitriy F. Kuznetsov, New results on expansion of iterated Itô and Stratonovich stochastic integrals with respect to components of a multidimensional Wiener process. The case of arbitrary CONS in $L_2[t, T]$, ICSM-9, 2-8 June, 2024, Divnomorskoe, Presentation PDF
136.
Kuznetsov M. D., Kuznetsov D.F., SDE-MATH Software Package, Gosudarstvennaya registratsiya programmy dlya EVM (RU2021616047), 2021 PDF
137.
Kuznetsov M. D., Kuznetsov D.F., SDE-MATH Fourier-Legendre Coefficients Database, Gosudarstvennaya registratsiya bazy dannykh, okhranyaemoi avtorskimi pravami (RU2021620788), 2021 PDF
138.
O. Yu. Kulchitskii, D. G. Arsenev, D. V. Butenina, V. M. Ivanov, N. V. Kapustina, M. L. Korenevskii, T. P. Krasulina, D. F. Kuznetsov, Metody usredneniya v teorii adaptivnogo stokhasticheskogo upravleniya, Informatsionnyi byulleten RFFI “Matematika, informatika, mekhanika”, # 4, 1996
Letters, errata
139.
D. F. Kuznetsov, “Correction to: D. F. Kuznetsov “New representations of explicit one-step numerical methods for jump-diffusion stochastic differential equations””, Computational Mathematics and Mathematical Physics, 41:12 (2001), 1816PDF