Dzhuraev T.D.,Apakov Yu.P., “On the theory of the third- order equation with multiple characteristics containing the second time derivative.”, Ukrainian Mathematical Journal. Springer, New York, 62:1 (2010), 43-55
Apakov Yu.P., “Construction of Green’s Function for One Problem of Rectangular Region.”, Malaysian Journal of Mathematical Sciences, 4:1 (2010), 1-16
Apakov Yu.P., “On a Method for Solving Boundary
Problems for Third-order Equation with Multiple Characteristics”, Modern Aspects of the Theory Partal Differential Equations. Operator Theory: Advances and Applications, Springer, Basel, 216 (2011), 65-78
Apakov Yu.P.,Rutkauskas S., “On a boundary problem to third order
PDE with multiple characteristics.”, Nonlinear Analysis: Modeling and Control. –Vilnius, 16:3 (2011), 255-269
Yu. P. Apakov, R. A. Umarov, “The solution to a boundary value problem for a third-order equation with variable coefficients”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 28:1 (2024), 171–185
2023
2.
Yu. P. Apakov, S. M. Mamajonov, “Boundary value problem for an inhomogeneous fourth order equations with constant coefficients”, Chelyab. Fiz.-Mat. Zh., 8:2 (2023), 157–172
2022
3.
Yu. P. Apakov, T. K. Yuldashev, A. Kh. Zhuraev, “On the solvability of a boundary-value problem for a third-order differential equation with multiple characteristics”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 210 (2022), 24–34
4.
Yu. P. Apakov, S. M. Mamajanov, “Boundary value problem for a fourth-order equation of parabolic-hyperbolic type with multiple characteristics, whose slopes are greater than one”, Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 4, 3–14; Russian Math. (Iz. VUZ), 66:4 (2022), 1–11
2021
5.
Yu. P. Apakov, S. M. Mamajonov, “Solvability of one boundary value problem for a fourth-order equation
of parabola-hyperbolic type in a pentagonal domain”, Sib. Zh. Ind. Mat., 24:4 (2021), 25–38
Yu. P. Apakov, “About three-dimensional analogue of the problem of Tricomi with parallel planes of extinction”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2018, no. 1(21), 6–20
2011
7.
Yu. P. Apakov, “A three-dimensional analog of the Tricomi problem for a parabolic-hyperbolic equation”, Sib. Zh. Ind. Mat., 14:2 (2011), 34–44; J. Appl. Industr. Math., 6:1 (2012), 12–21
Yu. P. Apakov, “Solving boundary problems for third-order equations
with multiple characteristics in unbounded domain”, News of the Kabardin-Balkar scientific center of RAS, 2008, no. 2, 147–151
2007
9.
T. D. Dzhuraev, Yu. P. Apakov, “On self-similar solution of an equation of the third order with multiple characteristics”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(15) (2007), 18–26
T. D. Dzhuraev, Yu. P. Apakov, “The Gellerstedt problem for a parabolic-hyperbolic equation in a three-dimensional space”, Differ. Uravn., 26:3 (1990), 438–448; Differ. Equ., 26:3 (1990), 322–330