Supersymmetric quantum mechanics, isospectral transformations, non-Hermitian operators, asymptotic methods, sound field of a moving source
Main publications:
A.A. Andrianov, A.V. Sokolov, “Nonlinear supersymmetry in Quantum Mechanics:
algebraic properties and differential representation”, Nuclear Physics B, 660:1-2 (2003), 25–50
A.V. Sokolov, A.A. Andrianov, F. Cannata, “Non-Hermitian Quantum Mechanics
of Non-diagonalizable Hamiltonians: puzzles with self-orthogonal states”, Journal of Physics A: Mathematical and General, 39:32 (2006), 10207–10227
A.A. Andrianov, F. Cannata, A.V. Sokolov, “Non-linear supersymmetry for non-
Hermitian, non-diagonalizable Hamiltonians: I. General properties”, Nuclear Physics B, 773:3 (2007), 107–136
A.A. Andrianov, F. Cannata, A.V. Sokolov, “Spectral singularities for non-Hermitian
one-dimensional Hamiltonians: Puzzles with resolution of identity”, Journal of Mathematical Physics, 51:5 (2010), 052104_1-22
A.A. Andrianov, A.V. Sokolov, “Factorization of nonlinear supersymmetry in
one-dimensional Quantum Mechanics. I: General classification of reducibility and
analysis of the third-order algebra”, Journal of Mathematical Sciences, 143:1 (2007), 2707–2722
Andrey V. Sokolov, “Resolutions of Identity for Some Non-Hermitian Hamiltonians. II. Proofs”, Supersymmetric Quantum Mechanics and Spectral Design (Centro de Ciencias de Benasque Pedro Pascual, Benasque, Spain, 18 – 30 July 2010), SIGMA, 7, 2011, 112–16http://www.sigma-journal.com/2011/112/, arXiv: 1107.5916
Alexander A. Andrianov, Andrey V. Sokolov, “Resolutions of Identity for Some Non-Hermitian Hamiltonians. I. Exceptional Point in Continuous Spectrum”, Supersymmetric Quantum Mechanics and Spectral Design (Centro de Ciencias de Benasque Pedro Pascual, Benasque, Spain, 18 – 30 July 2010), SIGMA, 7, 2011, 111–19http://www.sigma-journal.com/2011/111/, arXiv: 1107.5911
A. V. Sokolov, “Factorization of nonlinear supersymmetry in one-dimensional Quantum Mechanics III: precise classification of irreducible intertwining operators”, Questions of quantum field theory and statistical physics. Part 21, Zap. Nauchn. Sem. POMI, 374, POMI, St. Petersburg, 2010, 213–249http://www.pdmi.ras.ru/znsl/2010/v374/abs213.html
8.
A. V. Sokolov, “Factorization of nonlinear supersymmetry in one-dimensional quantum mechanics. III: precise classification of irreducible intertwining operators”, Journal of Mathematical Sciences, 168:6 (2010), 881–900http://link.springer.com/article/10.1007/s10958-010-0035-6
Alexander A. Andrianov, Andrey V. Sokolov, “Hidden Symmetry from Supersymmetry in One-Dimensional Quantum Mechanics”, 7th International Workshop “Quantum Physics with Non-Hermitian Operators (PHHQP 7)” (Centro de Ciencias de Benasque Pedro Pascual, Benasque, Spain, 29 June – 11 July 2008), SIGMA, 5, 2009, 64–26http://www.sigma-journal.com/2009/064/, arXiv: 0906.0549
A. V. Sokolov, Kvantovaya mekhanika s nelineinoi supersimmetriei dlya odnomernykh ermitovykh i neermitovykh gamiltonianov, dissertatsiya na soiskanie stepeni k.f.-m.n., predzaschita v 2007 godu, Sankt-Peterburgskii gosudarstvennyi universitet, Sankt-Peterburg, 2008 , 131 pp. http://dlib.rsl.ru/01004132677
12.
A. V. Sokolov, Kvantovaya mekhanika s nelineinoi supersimmetriei dlya odnomernykh ermitovykh i neermitovykh gamiltonianov, avtoreferat dissertatsii, 2008 http://dlib.rsl.ru/01003448448
A. A. Andrianov, A. V. Sokolov, “Factorization of nonlinear supersymmetry in one-dimensional quantum mechanics. I: General classification of reducibility and analysis of the third-order algebra”, J. Math. Sci. (N. Y.), 143:1 (2007), 2707–2722http://link.springer.com/article/10.1007/s10958-007-0158-6, arXiv: 0710.5738
A. A. Andrianov, A. V. Sokolov, “Nonlinear Supersymmetry in Quantum Mechanics”, 5th International Conference “Symmetry in Nonlinear Mathematical Physics” (Institute of Mathematics of NAS of Ukraine, Kiev, Ukraine, 23 – 29 June 2003), Proceedings of Institute of Mathematics of NAS of Ukraine, 50, Part 2, 2004, 539–546http://www.imath.kiev.ua/~snmp2003/Proceedings/sokolov.pdf
A. V. Sokolov, “Uniform asymptotic expansions of some integrals with two branching points in the neighborhood of a saddle point”, Comput. Math. Math. Phys., 42:5 (2002), 599–611
2003
21.
A. V. Sokolov, “The Sound Field of a Source That Executes in a Liquid Layer a Motion Represented as the Sum of a Subsonic Uniform Rectilinear Motion and a Periodic Motion. Exact (Explicit) Solutions”, J. Math. Sci. (N. Y.), 117:2 (2003), 4020–4027http://link.springer.com/article/10.1023/A
1999
22.
A. V. Sokolov, “Ravnomernye asimptoticheskie razlozheniya nekotorykh integralov s dvumya tochkami vetvleniya. I”, Vestnik SPbGU, seriya 1 (matematika, mekhanika, astronomiya), 1:1 (1999), 40–45
23.
A. V. Sokolov, “Uniform asymptotic expansions of certain integrals with two branch points I”, Vestnik St. Petersburg University: Mathematics, 32:1 (1999), 37–42
24.
V. S. Buldyrev, A. V. Sokolov, A. S. Starkov, “The acoustic field of a high-frequency source moving in a waveguide”, J. Math. Sci. (New York), 96:4 (1999), 3327–3331http://link.springer.com/article/10.1007/BF02172808