Graduated the Faculty of Mathematics and Mechanics of Tashkent State University in 1994 (chair of Mathematical Analysis). Doctor of Sciences in Mathematics (2019, National University of Uzbekistan, Tashkent, Uzbekistan); PhD in Mathematics (2000, Institute of Mathematics, Tashkent, Uzbekistan)
Speciality: Theory of Probability and Mathematical Statistics.
Main publications:
Azam A. Imomov, “On conditioned limit structure of the Markov branching process without finite second moment”, Malaysian Journal of Mathematical Sciences, 11:3 (2017), 393–422
Azam A. Imomov, “Limit Properties of Transition Functions of Continuous-Time Markov Branching Processes”, International Journal of Stochastic Analysis, 2014:doi.org/10.1155/2014/409345 (2014), 10
Azam A. Imomov, “Limit theorem for joint distribution in Q-processes”, Journal of Siberian Federal University: Mathematics and Physics, 7:3 (2014), 289–296
Azam A. Imomov, “On Markov continuous time analogue of Q-processes”, Theory of Probability and Mathematical Statistics, 2012, no. 84, 57–64
Azam Imomov, “A Differential Analog of the Main Lemma of the Theory of Markov Branching Processes and Its Applications”, Ukrainian Mathematical Journal, 57:2 (2005), 307–315
A.A.Imomov, M.Murtazaev, “On the Kolmogorov constant explicit form in the theory of discrete-time stochastic branching systems”, Journal of Applied Probability, 2024, 1–15 (Published online)
Azam A. Imomov, Sarvar B. Iskandarov, “Further remarks on the explicit generating function expression of the invariant measure of critical Galton-Watson branching systems”, Zhurn. SFU. Ser. Matem. i fiz., 17:2 (2024), 220–228;
3.
A.A.Imomov, M.Murtazaev, “Renewed Limit Theorems for Noncritical Galton–Watson Branching Systems”, Journal of Theoretical Probability, 37:3 (2024), 2843–2858
4.
A.A.Imomov, Z.A.Nazarov, “Central Limit Theorem and Law of Large Numbers Analogues for the Total Progeny in the Q-Processes”, Contemporary Mathematics (Singapore), 5:3 (2024), 2751–2769
5.
A.A.Imomov, S.B.Iskandarov, “Further Improvement of the Basic Lemma of Critical Bienaymé-Galton-Watson Branching Systems and Its Applications”, Information Technologies and Mathematical Modelling. Queueing Theory and Applications, ITMM 2023 Conf. Proc. (Tomsk, Russia, 2023), Communications in Computer and Information Science, 2163, eds. A.Dudin, A.Nazarov, A.Moiseev, Springer, Germany, 2024, 228–240
6.
A.A.Imomov, Z.A.Nazarov, S.P.Moiseeva, “On Estimation of Structural Parameters in Q-Process”, Information Technologies and Mathematical Modelling. Queueing Theory and Applications, ITMM 2023 Conf. Proc. (Tomsk, Russia, 2023), Communications in Computer and Information Science, 2163, eds. A.Dudin, A.Nazarov, A.Moiseev, Springer, Germany, 2024, 241–254
7.
A.A.Imomov, E.E.Tukhtaev, J.Sztrik, On Properties of Karamata Slowly Varying Functions with Remainder and Their Applications, by Preprints.org, MDPI, Basel, Switzerland, 2024 , 11 pp.
A.A.Imomov, Further remarks on the explicit generating function expression of the invariant measure of critical Galton-Watson Branching Systems, 2023 , 9 pp., arXiv: 2304.13326
10.
A.A.Imomov, Z.A.Nazarov, “Limit Theorems for the Positive Recurrent Q-process”, Information Technologies and Mathematical Modelling. Queueing Theory and Applications, ITMM 2022 Conf. Proc. (Karshi, Uzbekistan, 2022), Communications in Computer and Information Science, 1803, eds. A.Dudin, A.Nazarov, A.Moiseev, Springer, Germany, 2023, 1–15
A.A.Imomov, M.Murtazaev, “Refined Limit Theorems for the Critical Continuous-Time Markov Branching Systems”, Information Technologies and Mathematical Modelling. Queueing Theory and Applications, ITMM 2022 Conf. Proc. (Karshi, Uzbekistan, October 25–29, 2022), Communications in Computer and Information Science, 1803, eds. A.Dudin, A.Nazarov, A.Moiseev, Springer, Germany, 2023, 68–79
A.A.Imomov, Z.A.Nazarov, On asymptotic normality of the total progeny in the positive recurrent Q-processes, 2023 , 13 pp., arXiv: 2306.09367
2022
13.
A.A.Imomov, On conditioned limit structure of the Markov branching process without finite second moment, 2022 , 23 pp., arXiv: 2201.01941
14.
A.A.Imomov, Z.A.Nazarov, “Limit theorems for the sums of random variables in a special form”, Mathematics and Statistics, 10:1 (2022), 262–268
15.
A.A.Imomov, A.Meyliyev, “On the Application of Slowly Varying Functions with Remainder in the Theory of Markov Branching Processes with Mean One and Infinite Variance”, Ukrainian Math Journal, 73:8 (2022), 1225–1237
S. P. Moiseeva, T. V. Bushkova, E. V. Pankratova, M. P. Farkhadov, A. A. Imomov, “Asymptotic analysis of resource heterogeneous qs $$ (\mathrm {mmpp}+2\mathrm {m})^{(2,\nu )}/\mathrm {gi}(2)/\infty $$ under equivalently increasing service time”, Autom. Remote Control, 83:8 (2022), 1213–1227
18.
A. A. Imomov, I. N. Bozorov, A. M. Hurramov, “On the number of eigenvalues of a model operator on a one-dimensional lattice”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2022, no. 78, 22–37
19.
A. A. Imomov, A. I. Eshniyazov, “Infinite distohastic square operators in $l_1$”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2022, no. 76, 20–31
2021
20.
A.A.Imomov, A.Kh.Meyliev, “Ob asimptoticheskoi strukture nekriticheskikh markovskikh vetvyaschikhsya sluchainykh protsessov s nepreryvnym vremenem”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2021, no. 69, 22–36
A.A.Imomov, “On estimation of the convergence rate to invariant measures in Markov branching processes with possibly infinite variance and immigration”, Zhurn. SFU. Ser. Matem. i fiz., 14:5 (2021), 573–583;
23.
A.A.Imomov, A.Kh.Meyliev, On application of slowly varying functions with remainder in the theory of Markov branching processes with mean one and infinite variance, 2021 , 11 pp., arXiv: 2108.12180
2020
24.
A. A. Imomov, Y. T. Khodjaev, “Some Remarks on a Direct Calculation of Probabilities in Urn Schemes”, Mathematical Sciences and Applications E-Notes, 8:1 (2020), 177–184
25.
A. A. Imomov, Renewed Limit Theorems for the discrete-time Branching Process and its Conditioned Limiting Law interpretation, 2020 , 32 pp., arXiv: 2004.09307
26.
A. A. Imomov, Y. T. Khodjaev, “On Some Methods for Solution of Linear Diophantine Equations”, Universal Journal of Mathematics and Applications, 3:2 (2020), 86–92
A.A.Imomov, A.Kh.Meyliev, On asymptotic structure of continuous-time Markov Branching Processes allowing Immigration and without high-order moments, 2020 , 11 pp., arXiv: 2006.09857
2019
28.
A. A. Imomov, E. E. Tukhtaev, “On application of slowly varying functions with remainder in the theory of Galton–Watson branching process”, Zhurn. SFU. Ser. Matem. i fiz., 12:1 (2019), 51–57
A. A. Imomov, “On a limit structure of the Galton–Watson branching processes with regularly varying generating functions”, Probability and Mathematical Statistics, 39:1 (2019), 61–73
30.
Imomov, A.A., Tukhtaev, E.E., On asymptotic structure of the critical Galton-Watson Branching Processes with infinite variance and Immigration, 2019 , 7 pp., arXiv: 1904.09723
31.
Imomov, A.A., Khodjaev, Y., Some remarks on the direct calculation of Probabilities in Urn Schemes, 2019 , 10 pp., arXiv: 1908.07184
2017
32.
A. A. Imomov, “On the limit structure of continuous-time Markov branching process”, Zhurn. SFU. Ser. Matem. i fiz., 10:1 (2017), 117–127
33.
A. A. Imomov, “On conditioned limit structure of the Markov branching process without finite second moment”, Malaysian Journal of Mathematical Sciences, 11:3 (2017), 393–422
2015
34.
A. A. Imomov, “On long-time behaviors of states of Galton–Watson branching processes allowing immigration”, Zhurn. SFU. Ser. Matem. i fiz., 8:4 (2015), 394–405
A. A. Imomov, “Limit properties of transition functions of continuous-time markov branching processes”, International Journal of Stochastic Analysis, 2014, 1–10
A. A. Imomov, “A differential analog of the main lemma of the theory of Markov branching processes and its applications”, Ukrainian Mathematical Journal, 57:2 (2005), 307–315
A. A. Imomov, “A differential analogue of the main lemma of the theory of Markov branching processes and its applications”, translation in Ukr. Math. J. 57, No. 2, 307-315 (2005), Ukrainian Mathematical Journal, 57:2 (2005), 258–264