Full list of publications: |
|
|
Citations (Crossref Cited-By Service + Math-Net.Ru) |
|
1. |
D. A. Tvyordyj, R. I. Parovik, “Application of high-performance computing to solve the cauchy problem with the fractional Riccati equation using an nonlocal implicit finite-difference scheme”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 46:1 (2024), 103–117 |
2. |
A. Zh. Otenova, R. I. Parovik, “Mathematical model of a fractional nonlinear Mathieu oscillator”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 46:1 (2024), 70–88 |
3. |
D. A. Tvyordyj, R. I. Parovik, “The optimization problem for determining the functional dependence of the variable order of the fractional derivative of the Gerasimov-Caputo type”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 47:2 (2024), 35–57 |
4. |
A. I. Salimova, R. I. Parovik, “Mathematical model of Van der Pol-Airy fractional oscillator”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 47:2 (2024), 21–34 |
5. |
Kim V.A., Parovik R.I., Rakhmonov Z.R., “Implicit finite-difference scheme for a Duffing oscillator with a derivative of variable fractional order of the Riemann-Liouville type”, Mathematics, 11:3 (2023), 538
|
3
[x]
|
6. |
D. F. Mingazova, R. I. Parovik, “Some aspects of the qualitative analysis of the high-frequency geoacoustic emission model”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 42:1 (2023), 191–206 |
7. |
Kh. T. Alimov, F. Kh. Dzamikhova, R. I. Parovik, “Fractional mathematical model Mcsherry”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 42:1 (2023), 164–179 |
8. |
D. A. Tvyordiy, R. I. Parovik, A. R. Hayotov, A. K. Boltaev, “Parallelization of a numerical algorithm for solving the Sauchy problem for a nonlinear differential equation of fractional variable order using OpenMP technology”, Vestnik KRAUNTs. Fiz.-mat. nauki, 43:2 (2023), 87–110 ;
|
1
[x]
|
9. |
D. A. Tvyordyj, R. I. Parovik, “Solution of the inverse problem of identifying the order of the fractional derivative in a mathematical model of the dynamics of solar activitythe at rising phase”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 45:4 (2023), 36–51 |
10. |
R. I. Parovik, “Fractional model of geoacoustic emission”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 45:4 (2023), 24–35 |
11. |
R. I. Parovik, “Qualitative analysis of Selkov's fractional dynamical system with variable memory using a modified Test 0-1 algorithm”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 45:4 (2023), 9–23 |
12. |
D. A. Tvyordyj, E. O. Makarov, R. I. Parovik, “Research of stress-strain state of geo-environment by emanation methods on the example of $\alpha$(t)-model of radon transport”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 44:3 (2023), 86–104 |
13. |
R. I. Parovik, “Implementation of the modified Test 0-1 algorithm for the analysis of chaotic modes of the fractional Duffing oscillator”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 44:3 (2023), 67–85 |
14. |
Kh. M. Shadimetov, A. K. Boltaev, R. I. Parovik, “Construction of optimal interpolation formula exact for trigonometric functions by Sobolev's method”, Vestnik KRAUNTs. Fiz.-mat. nauki, 38:1 (2022), 131–146 ;
|
4
[x]
|
15. |
R. I. Parovik, “Investigation of the Selkov fractional dynamical system”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 41:4 (2022), 146–166 |
16. |
D. A. Tvyordyj, E. I. Malkin, R. I. Parovik, “Mathematical modeling of the propagation of a plane electromagnetic wave in a strip waveguide with inhomogeneous boundary conductivity”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 41:4 (2022), 66–88 |
17. |
D. A. Tvyordyj, R. I. Parovik, “Mathematical modeling in matlab of solar activity cycles according to the growth-decline of the Wolf number”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 41:4 (2022), 47–64 |
18. |
V. A. Kim, R. I. Parovik, “Implicit finite-difference scheme for a Duffing oscillator with a derivative of variable fractional order of the Riemann-Liouville type”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 40:3 (2022), 179–198 |
19. |
G. A. Katkova, E. O. Makarov, R. I. Parovik, “Computer program for modeling anomalous variations in radon volumetric activity based on the mechanism of its injection into the groundwater flow”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 40:3 (2022), 165–178 |
20. |
D. A. Tvyordyj, R. I. Parovik, “Fractional differential model of physical processes with saturation and its application to the description of the dynamics of COVID-19”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 40:3 (2022), 119–136 |
21. |
M. I. Gapeev, A. A. Solodchuk, R. I. Parovik, “Coupled oscillators as a model of high-frequency geoacoustic emission”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 40:3 (2022), 88–100 |
22. |
Parovik R. I., “Studies of the Fractional Selkov Dynamical System for Describing the Self-Oscillatory Regime of Microseisms”, Mathematics, 10:22 (2022), 4208
|
3
[x]
|
23. |
Kim V.A., Parovik R.I., “Application of the explicit Euler method for numerical analysis of a nonlinear fractional oscillation equation”, Fractal and Fractional, 6:5 (2022)
|
3
[x]
|
24. |
Tverdyi Dmitriy, Parovik Roman, “Application of the Fractional Riccati Equation for Mathematical Modeling of Dynamic Processes with Saturation and Memory Effect”, Fractal and Fractional, 6:3 (2022), 163
|
11
[x]
|
25. |
Tverdyi D., Parovik R., “Investigation of Finite-Difference Schemes for the Numerical Solution of a Fractional Nonlinear Equation”, Fractal and Fractional, 6:1 (2022), 23 , 27 pp.
|
12
[x]
|
26. |
Y. Grushko, R. Parovik, “Fast pupil tracking based on the study of a boundary-stepped image model and multidimensional optimization Hook-Jives method”, Informatics and Automation, 20:2 (2021), 435–462 |
27. |
Z. I. Sidorov, R. I. Parovik, A. V. Vukolov, V. S. Yakovleva, “Investigation of gamma background in parks and recreation areas of the city of petropavlovsk-kamchatsky”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 37:4 (2021), 183–202 |
28. |
Parovik R., Tverdyi D., “Some Aspects of Numerical Analysis for a Model Nonlinear Fractional Variable Order Equation”, Mathematical and Computational Applications, 26:3 (2021), 55 , 11 pp.
|
8
[x]
|
29. |
Yakovleva V., Yakovlev G., Parovik R., Zelinskiy A., Kobzev A., “Rainfall Intensity and Quantity Estimation Method Based on Gamma-Dose Rate Monitoring”, Sensors, 21:19 (2021), 6411 , 16 pp.
|
5
[x]
|
30. |
Yakovleva V., Zelinskiy A., Yakovlev G., Parovik R., Kobzev A., “Model for Reconstruction of gamma-Background during Liquid Atmospheric Precipitation”, Mathematics, 9:14 (2021), 1636 , 10 pp.
|
5
[x]
|
31. |
V. A. Kim, R. I. Parovik, “Investigation of forced oscillations of a Duffing oscillator with a variable fractional order derivative”, News of the Kabardin-Balkar scientific center of RAS, 2020, no. 1, 46–56 |
32. |
A. R. Hayotov, F. A. Nuraliev, R. I. Parovik, Kh. M. Shadimetov, “Euler-Maclaurin type optimal formulas for numerical integration in Sobolev space”, Vestnik KRAUNTs. Fiz.-mat. nauki, 32:3 (2020), 75–101 ; |
33. |
R. I. Parovik, “Bulletin KRASEC. Physical and mathematical sciences. results for 10 years and development prospects”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 32:3 (2020), 8–14 |
34. |
A. A. Shakirova, P. P. Firstov, R. I. Parovik, “Phenomenological model of the generation of the seismic mode «drumbeats» earthquakes accompanying the eruption of kizimen volcano in 2011-2012”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 33:4 (2020), 86–101 |
35. |
R. I. Parovik, “Quality factor of forced oscillations of a linear fractional oscillator”, Tech. Phys., 65:7 (2020), 1015–1019 |
36. |
Parovik R.I., “Mathematical Modeling of Linear Fractional Oscillators”, Mathematics, 8:11 (2020), 1879 , 26 pp.
|
20
[x]
|
37. |
Kim V.A., Parovik R.I., “Mathematical Model of Fractional Duffing Oscillator with Variable Memory”, Mathematics, 8:11 (2020), 2063 , 14 pp.
|
14
[x]
|
38. |
E. R. Novikova, R. I. Parovik, “Issledovanie tochek pokoya ereditarnoi dinamicheskoi sistemy Van-der-Polya-Duffinga”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2019, no. 1(26), 71–77
|
1
[x]
|
39. |
E. A. Gafurova, Y. L. Michaylov, Y. V. Grushko, R. I. Parovik, I. A. Kashutina, “Mathematical model of dynamics of small enterprises with account of memory effects”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2019, no. 1(26), 46–53 |
40. |
R. I. Parovik, “Chaotic Modes of the Fractional Duffing Oscillator”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.] |
41. |
R. I. Parovik, “Amplitude-frequency and phase-frequency characteristics of forced vibrations of nonlinear fractional oscillator”, Tech. Phys. Lett., 45:7 (2019), 660–663 |
42. |
R. I. Parovik, “Numerical analysis of the Cauchy problem for a wide class fractal oscillators”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2018, no. 1, 93–116 |
43. |
R. I. Parovik, “Stability of some dynamic systems hereditarity”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2018, no. 2(22), 8–19 |
44. |
R. I. Parovik, “Chaotic regimes of a fractal nonlinear oscillator”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:2 (2018) |
45. |
R. I. Parovik, “Mathematical model of a wide class memory oscillators”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 11:2 (2018), 108–122
|
8
[x]
|
46. |
R. I. Parovik, “On a Certain Finite-Difference Scheme for a Hereditary Oscillatory Equation”, J. Math. Sci. (N. Y.), 253:4 (2021), 547–557 |
47. |
V. A. Kim, R. I. Parovik, “Calculation the maximum Lyapunov exponent for the oscillatory system of Duffing with a degree memory”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2018, no. 3(23), 98–105 |
48. |
Parovik R.I., “Research dynamic modes of stick-slip effect with the account of hereditarity”, IX INTERNATIONAL CONFERENCE SOLAR-TERRESTRIAL RELATIONS AND PHYSICS OF EARTHQUAKE PRECURSORS, 62, E3S Web of Conferences, 2018, 02015
|
1
[x]
|
49. |
Lipko O.V., Parovik R.I., “The study of chaotic and regular regimes of the fractal oscillators FitzHugh-Nagumo”, IX INTERNATIONAL CONFERENCE SOLAR-TERRESTRIAL RELATIONS AND PHYSICS OF EARTHQUAKE PRECURSORS, 62, E3S Web of Conferences, 2018, 02017
|
3
[x]
|
50. |
R. I. Parovik, “Mathematical modelling of hereditarity Airy oscillator with friction”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:1 (2017), 138–148 |
51. |
R. I. Parovik, “Existence and uniqueness of the cauchy problem for a wide class of ereditary oscillators”, Meždunar. nauč.-issled. žurn., 2017, no. 10(64), 112–115 |
52. |
Parovik R.I., “Radon transport model into a porous ground layer of finite capacity”, VIII INTERNATIONAL CONFERENCE SOLAR-TERRESTRIAL RELATIONS AND PHYSICS OF EARTHQUAKE PRECURSORS, 20, E3S Web of Conferences, 2017, 03004
|
1
[x]
|
53. |
R. I. Parovik, “On a hereditarity vibrating system with allowance for the effects stick-slip”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2016, no. 4(15), 30–35 |
54. |
Parovik R.I., “On a credit oscillatory system with the inclusion of stick-slip”, VII INTERNATIONAL CONFERENCE “SOLAR-TERRESTRIAL RELATIONS AND PHYSICS OF EARTHQUAKES PRECURSORS”, E3S Web of Conferences, 2016, 00018
|
6
[x]
|
55. |
Parovik R.I., “Explicit finite-difference scheme for the numerical solution of the model equation of nonlinear hereditary oscillator with variable-order fractional derivatives”, Archives of Control Sciences, 26:3 (2016), 429-435
|
14
[x]
|
56. |
G. M. Vodinchar, O. K. Zhdanova, L. D. Ostroverhaya, R. I. Parovik, A. S. Perezhogin, O. V. Sheremet'eva, T. P. Yakovleva, “Solutions of mathematical olympiad «Vitus Bering - 2015»”, Bulletin KRASEC. Phys. & Math. Sci., 11:2 (2015), 93–98 |
57. |
R. I. Parovik, “Finite-difference scheme for fractal oscillator with a variable fractional order”, Bulletin KRASEC. Phys. & Math. Sci., 11:2 (2015), 85–92 |
58. |
R. I. Parovik, “Mathematical modeling of nonlocal oscillatory duffing system with fractal friction”, Bulletin KRASEC. Phys. & Math. Sci., 10:1 (2015), 16–21 |
59. |
T. S. Kumykov, R. I. Parovik, “Mathematical modeling of changes in the charge cloud droplets in a fractal environment”, Bulletin KRASEC. Phys. & Math. Sci., 10:1 (2015), 11–15 |
60. |
R. I. Parovik, “Mathematical modeling of oscillator hereditarity”, Computer Research and Modeling, 7:5 (2015), 1001–1021 |
61. |
R. I. Parovik, “Numerical analysis some oscillation equations with fractional order derivatives”, Bulletin KRASEC. Phys. & Math. Sci., 9:2 (2014), 34–38 |
62. |
R. I. Parovik, “On the numerical solution of equations fractal oscillator with variable order fractional of time”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2014, no. 1(8), 60–65 |
63. |
R. I. Parovik, “Model subdiffusion radon in fractal porous medium”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2013, no. 2(7), 46–51 |
64. |
R. I. Parovik, P. P. Firstov, “Phase analysis of time series of geophysical fields”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2013, no. 1(6), 23–29 |
65. |
R. I. Parovik, “Modeling of choice leadership high school optimum decisions agreed upon with driving with managed solutions its affiliates”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2013, no. 1(6), 5–11 |
66. |
R. I. Parovik, “Calculation specific functions of Mittag-Leffler in the computer mathematics Maple”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2012, no. 2(5), 51–61 |
67. |
V. V. Samuta, V. A. Strelova, R. I. Parovik, “Nonlocal model of neoclassical economic growth Solow”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2012, no. 2(5), 37–41 |
68. |
Ya. E. Shpilko, A. A. Solomko, R. I. Parovik, “Parametrization Samuelson equation model for Evans fixing, equilibrium price of the same product market”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2012, no. 2(5), 33–36 |
69. |
R. I. Parovik, “Charts Strutt-Ince for generalized Mathieu equation”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2012, no. 1(4), 24–30 |
70. |
R. I. Parovik, “Model radioactive radon decay”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2012, no. 1(4), 18–23 |
71. |
R. I. Parovik, P. P. Firstov, E. O. Makarov, “Mathematical modeling of fractal dimension geomediumand”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2011, no. 2(3), 42–49 |
72. |
R. I. Parovik, “Generalized equations of Mathieu”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2011, no. 2(3), 12–17 |
73. |
V. S. Yakovleva, R. I. Parovik, “The algorithm of piecewise constant telemetric parameters segmentation”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2011, no. 1(2), 46–56 |
74. |
R. I. Parovik, “Solution nonlocal equations anomalous diffusion-advection radon in system soil-atmosphere”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2011, no. 1(2), 38–45 |
75. |
R. I. Parovik, “Nonlocal model of diffusion-advection radon in ground-atmosphere”, Matem. Mod., 22:9 (2010), 95–106 |
76. |
R. I. Parovik, Matem. Mod. Kraev. Zadachi, 3 (2010), 233–236 |
77. |
R. I. Parovik, “Cauchy Problem for the Nonlocal Equation Diffusion-Advection Radon in Fractal Media”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 1(20) (2010), 127–132 |
78. |
R. I. Parovik, “Model for unsteady of diffusion-advection of radon in soil-atmosphere”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2010, no. 1(1), 39–45 |
79. |
R. I. Parovik, “The method of Greens function for one differential equation of a fractional order”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2010, no. 1(1), 17–23 |
80. |
Yakovleva V.S., Parovik R.I., “Solution of diffusion-advection equation of radon transport in many-layered geological media”, Nukleonika, 55:4 (2010), 601-606 |
81. |
R. I. Parovik, B. M. Shevtsov, “A Radon transfer processes in fracttional structure medium”, Math. Models Comput. Simul., 2:2 (2010), 180–185 |
82. |
R. I. Parovik, P. P. Firstov, “The Algorithm of Calculation of Density of a Stream of Radon $(^{222}\textrm{Rn})$ from the Surface of the Ground”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2008, no. 3(4), 96–101 |
83. |
R. I. Parovik, I. A. Iljin, P. P. Firstov, “Generalized one-dimensional model for mass transfer of radon ${}^{222}$Rn in ground and exhalation it in the surface layer of the atmosphere”, Matem. Mod., 19:11 (2007), 43–50 |
|