Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Kozlov, Aleksandr Ivanovich

Statistics Math-Net.Ru
Total publications: 9
Scientific articles: 9

Number of views:
This page:382
Abstract pages:2744
Full texts:851
References:403
E-mail: ;

https://www.mathnet.ru/eng/person31546
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/341248

Publications in Math-Net.Ru Citations
2021
1. A. I. Kozlov, M. Yu. Kokurin, “On Lavrent'ev-type integral equations in coefficient inverse problems for wave equations”, Zh. Vychisl. Mat. Mat. Fiz., 61:9 (2021),  1492–1507  mathnet  elib; Comput. Math. Math. Phys., 61:9 (2021), 1470–1484  isi  scopus 9
2014
2. M. Yu. Kokurin, A. I. Kozlov, “On a posteriori approximation of a set of solutions to a system of quadratic equations with the use of the Newton method”, Sib. Zh. Vychisl. Mat., 17:1 (2014),  53–65  mathnet  mathscinet; Num. Anal. Appl., 7:1 (2014), 45–56  isi  scopus 1
2009
3. A. I. Kozlov, M. Yu. Kokurin, “Gradient projection method for stable approximation of quasisolutions to irregular nonlinear operator equations”, Zh. Vychisl. Mat. Mat. Fiz., 49:10 (2009),  1757–1764  mathnet; Comput. Math. Math. Phys., 49:10 (2009), 1678–1685  isi  scopus 4
2005
4. A. I. Kozlov, D. Yu. Muromtsev, “Full analysis of the triple integrator problem”, Avtomat. i Telemekh., 2005, no. 1,  3–12  mathnet  mathscinet  zmath; Autom. Remote Control, 66:1 (2005), 1–9  scopus 1
2003
5. A. B. Bakushinskii, M. Yu. Kokurin, A. I. Kozlov, “Stable gradient design method for inverse problem of gravimetry”, Matem. Mod., 15:7 (2003),  37–45  mathnet  mathscinet  zmath
6. A. I. Kozlov, “Gradient-projection method for finding quasisolutions of nonlinear irregular operator equations”, Num. Meth. Prog., 4:1 (2003),  117–125  mathnet 2
7. A. B. Bakushinskii, A. I. Kozlov, M. Yu. Kokurin, “On some inverse problem for a three-dimensional wave equation”, Zh. Vychisl. Mat. Mat. Fiz., 43:8 (2003),  1201–1209  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 43:8 (2003), 1149–1158 12
2002
8. A. I. Kozlov, “A class of stable iterative methods for solving nonlinear ill-posed operator equations”, Num. Meth. Prog., 3:1 (2002),  180–186  mathnet
9. O. V. Karabanova, A. I. Kozlov, M. Yu. Kokurin, “Stable finite-dimensional iterative processes for solving nonlinear ill-posed operator equations”, Zh. Vychisl. Mat. Mat. Fiz., 42:8 (2002),  1115–1128  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 42:8 (2002), 1073–1085 4

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024