Full list of publications: |
|
|
Citations (Crossref Cited-By Service + Math-Net.Ru) |
|
|
2024 |
1. |
G.V. Fedorov, “On the sequences of polynomials $f$ with a periodic continued fraction expansion $\sqrt{f}$”, Moscow University Mathematics Bulletin, 79:2 (2024), 98–102 |
|
2023 |
2. |
G.V. Fedorov, “On estimates for the period length of functional continued fractions over algebraic number fields”, Chebyshevskii Sb., 24:3 (2023), 162–189 |
3. |
G. V. Fedorov, “Continued Fractions and the Classification Problem for Elliptic Fields Over Quadratic Fields of Constants”, Math. Notes, 114:6 (2023), 1203–1219 |
4. |
V. P. Platonov, V. S. Zhgoon, G.V. Fedorov, “On the finiteness of the set of generalized Jacobians with nontrivial torsion points over algebraic number fields”, Dokl. Math., 108:2 (2023), 382–386 |
|
2022 |
5. |
G. V. Fedorov, “On the problem of describing elements of elliptic fields with a periodic expansion into a continued fraction over quadratic fields”, Dokl. Math., 106:1 (2022), 259–264 |
6. |
G. V. Fedorov, V. S. Zhgoon, M. M. Petrunin, Yu. N. Shteinikov, “On the Parametrization of Hyperelliptic Fields with $S$-Units of Degrees 7 and 9”, Math. Notes, 112:3 (2022), 451–457 |
7. |
V. P. Platonov, G. V. Fedorov, “Periodicity Criterion for Continued Fractions of Key Elements in Hyperelliptic Fields”, Doklady Mathematics, 2022, 262–269 |
|
2021 |
8. |
G. V. Fedorov, “On fundamental $S$-units and continued fractions constructed in hyperelliptic fields using two linear valuations”, Dokl. Math., 103:3 (2021), 151–156 |
9. |
V. P. Platonov, G. V. Fedorov, “On the classification problem for polynomials $f$ with a periodic continued fraction expansion of $\sqrt{f}$ in hyperelliptic fields”, Izv. Math., 85:5 (2021), 972–1007 |
10. |
V. V. Aleksandrov, S. B. Gashkov, D. V. Georgievskii, V. P. Karlikov, B. S. Kashin, G. M. Kobel'kov, V. V. Kozlov, T. P. Lukashenko, A. S. Mishchenko, Yu. V. Nesterenko, R. I. Nigmatulin, O. V. Popov, V. A. Sadovnichii, I. N. Sergeev, G. V. Fedorov, A. T. Fomenko, A. I. Shafarevich, A. N. Shiryaev, V. Ya. Shkadov, A. A. Shkalikov, “To 70-th anniversary of professor V. N. Chubarikov”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2021, no. 5, 69–71 |
|
2020 |
11. |
G. V. Fedorov, “On families of hyperelliptic curves over the field of rational numbers, whose Jacobian contains torsion points of given orders”, Chebyshevskii Sb., 21:1 (2020), 322–340 |
12. |
G. V. Fedorov, “On the period length of a functional continued fraction over a number field”, Dokl. Math., 102:3 (2020), 513–517 |
13. |
G. V. Fedorov, “On $S$-units for valuations of the second degree in hyperelliptic fields”, Izv. Math., 84:2 (2020), 392–435 |
14. |
V. P. Platonov, G. V. Fedorov, “On the problem of classification of periodic continued fractions in hyperelliptic fields”, Russian Math. Surveys, 75:4 (2020), 785–787 |
|
2019 |
15. |
G. V. Fedorov, “On boundedness of period lengths of continued fractions of key elements hyperelliptic fields over the field of rational numbers”, Chebyshevskii Sb., 20:4 (2019), 357–370 |
|
2022 |
16. |
V. P. Platonov, G. V. Fedorov, “The criterion of periodicity of continued fractions of key elements in hyperelliptic fields”, Doklady Mathematics (Supplementary issues), 106:2 (2022), 262–269 |
|
2019 |
17. |
V. P. Platonov, G. V. Fedorov, “On $S$-units for linear valuations and the periodicity of continued fractions of generalized type in hyperelliptic fields”, Dokl. Math., 99:3 (2019), 277–281 |
|
2018 |
18. |
G. V. Fedorov, “Periodic continued fractions and $S$-units with second degree valuations in hyperelliptic fields”, Chebyshevskii Sb., 19:3 (2018), 282–297 |
19. |
V. P. Platonov, G. V. Fedorov, “An Infinite Family of Curves of Genus 2 over the Field of Rational Numbers Whose Jacobian Varieties Contain Rational Points of Order 28”, Dokl. Math., 98:2 (2018), 468–471 |
20. |
V. P. Platonov, V. S. Zhgoon, G. V. Fedorov, “On the Periodicity of Continued Fractions in Hyperelliptic Fields over Quadratic Constant Field”, Dokl. Math., 98:2 (2018), 430–434 |
21. |
V. P. Platonov, G. V. Fedorov, “On the problem of periodicity of continued fractions in hyperelliptic fields”, Sb. Math., 209:4 (2018), 519–559 |
22. |
G. V. Fedorov, “On unordered multiplicative partitions”, Doklady Mathematics, 98 (2018), 607–611 (to appear) |
23. |
V. P. Platonov, G. V. Fedorov, “An infinite family of curves of genus 2 over the field of rational numbers whose jacobian varieties contain rational points of order 28”, Doklady Mathematics, 98:2 (2018), 468–471 |
|
2017 |
24. |
V. P. Platonov, G. V. Fedorov, “On the periodicity of continued fractions in elliptic fields”, Dokl. Math., 96:1 (2017), 332–335 |
25. |
V. P. Platonov, G. V. Fedorov, “On the periodicity of continued fractions in hyperelliptic fields”, Dokl. Math., 95:3 (2017), 254–258 |
|
2016 |
26. |
V. P. Platonov, V. S. Zhgoon, G. V. Fedorov, “Continued Rational Fractions in Hyperelliptic Fields and the Mumford Representation”, Dokl. Math., 94:3 (2016), 692–696 |
|
2015 |
27. |
V. P. Platonov, G. V. Fedorov, “$S$-units and periodicity of continued fractions in hyperelliptic fields”, Dokl. Math., 92:3 (2015), 752–756 |
|
2013 |
28. |
G. V. Fedorov, “On a number of prime divisors of an integer with bounded multipleness”, Izv. Saratov Univ. Math. Mech. Inform., 13:4(2) (2013), 129–133 |
29. |
G. V. Fedorov, “On the Number of Divisors of Binomial Coefficients”, Math. Notes, 93:2 (2013), 308–316 |
30. |
G. V. Fedorov, “Number of divisors of the central binomial coefficient”, Moscow University Mathematics Bulletin, 68:4 (2013), 194–197 |
31. |
G. V. Fedorov, “The upper limit value of the divisor function with growing dimension”, Doklady Mathematics, 88:2 (2013), 529–531 |
32. |
G. V. Fedorov, “The greatest order of the divisor function with increasing dimension”, Matematica Montisnigri, 28 (2013), 17–24 https://www.montis.pmf.ac.me/vol28/28_2.pdf |
|
2012 |
33. |
G. V. Fedorov, “On a theorem of A.I. Pavlov”, Doklady Mathematics, 86:2 (2012), 648–649 |
|
2010 |
34. |
G. V. Fedorov, “Estimation of the sum of values of the divisor function”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2010, no. 2, 50–53 |
|