Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Martynova, Tatyana Sergeevna

Statistics Math-Net.Ru
Total publications: 11
Scientific articles: 11

Number of views:
This page:326
Abstract pages:3843
Full texts:1352
References:525
Senior Researcher
Candidate of physico-mathematical sciences (2002)
E-mail: ,

https://www.mathnet.ru/eng/person31315
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/657178
https://elibrary.ru/author_items.asp?spin=6881-6215
https://orcid.org/0000-0002-7073-1162
https://www.webofscience.com/wos/author/record/AAB-8087-2020
https://www.scopus.com/authid/detail.url?authorId=14042033600

Publications in Math-Net.Ru Citations
2022
1. T. S. Martynova, G. V. Muratova, I. N. Shabas, V. V. Bavin, “Multigrid methods with skew-Hermitian based smoothers for the convection–diffusion problem with dominant convection”, Num. Meth. Prog., 23:1 (2022),  46–59  mathnet
2020
2. G. V. Muratova, T. S. Martynova, E. M. Andreeva, V. V. Bavin, Z.-Q. Wang, “Multigrid methods with PSTS- and HSS-smoothers for solving the unsteady Navier-Stokes equations”, Sib. Èlektron. Mat. Izv., 17 (2020),  2190–2203  mathnet  isi
2016
3. T. S. Martynova, L. A. Krukier, “Numerical solution of nonlinear least squares problems arising in the simulating of environment pollutants”, Matem. Mod., 28:8 (2016),  82–96  mathnet  elib
4. L. A. Krukier, T. S. Martynova, “Preconditioning of GMRES by the skew-Hermitian iterations”, Sib. Zh. Vychisl. Mat., 19:3 (2016),  267–279  mathnet  mathscinet  elib; Num. Anal. Appl., 9:3 (2016), 207–217  isi  elib  scopus
2014
5. L. A. Krukier, T. S. Martynova, “An effective iterative method for saddle point problems”, Matem. Mod., 26:12 (2014),  116–126  mathnet  elib; Math. Models Comput. Simul., 7:4 (2015), 331–338  scopus 1
2010
6. L. A. Krukier, O. A. Pichugina, T. S. Martynova, “Improving the efficiency of variational methods for solving strongly nonsymmetric linear algebraic equation system received in convection-diffusion problems”, Matem. Mod., 22:10 (2010),  56–68  mathnet  mathscinet; Math. Models Comput. Simul., 3:3 (2011), 346–356  scopus
2008
7. T. S. Martynova, “Numerical solution of second order elliptical equations with mixed derivatives by effective iterative methods”, Matem. Mod., 20:6 (2008),  35–47  mathnet  mathscinet  zmath; Math. Models Comput. Simul., 1:3 (2009), 370–382  scopus 1
2006
8. Zh. Zh. Bai, L. A. Krukier, T. S. Martynova, “Two-step iterative methods for solving the stationary convection-diffusion equation with a small parameter at the highest derivative on a uniform grid”, Zh. Vychisl. Mat. Mat. Fiz., 46:2 (2006),  295–306  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 46:2 (2006), 282–293  scopus 12
2004
9. L. A. Krukier, T. S. Martynova, “Pollution spreading in liquid crystals in the electric field”, Matem. Mod., 16:1 (2004),  3–11  mathnet  zmath 1
2001
10. T. S. Martynova, O. A. Belokon, “Non-stationary iterative method for strongly nonsymmetric linear equation systems”, Matem. Mod., 13:3 (2001),  61–68  mathnet  mathscinet  zmath 2
1999
11. L. A. Krukier, T. S. Martynova, “Influence of the form of convection-diffusion equation on the convergence of the successive over-relaxation method”, Zh. Vychisl. Mat. Mat. Fiz., 39:11 (1999),  1821–1827  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 39:11 (1999), 1748–1754 5

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024