|
|
Publications in Math-Net.Ru |
Citations |
|
2023 |
1. |
V. F. Formalev, B. A. Garibyan, S. A. Kolesnik, “Simulation of heat and mass transfer on blunt bodies under aerodynamic heating of high-speed aircraft”, TVT, 61:3 (2023), 398–404 ; High Temperature, 61:3 (2023), 365–371 |
1
|
|
2022 |
2. |
V. F. Formalev, S. A. Kolesnik, “Wave heat transfer in heat-shielding materials with an exponential-like nonlinear dependence of thermal conductivity on temperature”, TVT, 60:5 (2022), 797–800 ; High Temperature, 60:5 (2022), 731–734 |
5
|
|
2021 |
3. |
V. F. Formalev, S. A. Kolesnik, E. L. Kuznetsova, “Heat and mass transfer on the side surfaces of blunt nose parts of hypersonic aircraft”, TVT, 59:5 (2021), 797–800 ; High Temperature, 60:1, Suppl. 2 (2022), S288–S291 |
20
|
4. |
V. F. Formalev, R. A. Degtyarenko, B. A. Garibyan, S. A. Kolesnik, “Modeling heat and mass transfer during periodical spraying of a high-temperature heat-resistant coating”, TVT, 59:4 (2021), 566–570 ; High Temperature, 60:1, Suppl. 1 (2022), S76–S80 |
7
|
|
2020 |
5. |
V. F. Formalev, N. A. Bulychev, E. L. Kuznetsova, S. A. Kolesnik, “The thermal state of a packet of cooled microrocket gas-dynamic lasers”, Pisma v Zhurnal Tekhnicheskoi Fiziki, 46:5 (2020), 44–47 ; Tech. Phys. Lett., 46:3 (2020), 245–248 |
7
|
6. |
V. F. Formalev, “Modeling of heat and mass transfer in heat-shielding composite materials based on the universal law of binder decomposition”, TVT, 58:3 (2020), 412–418 ; High Temperature, 58:3 (2020), 386–392 |
9
|
7. |
V. F. Formalev, “On the universal law of the decomposition of thermal-protective binder composite materials at high temperatures”, TVT, 58:1 (2020), 91–96 ; High Temperature, 58:1 (2020), 92–96 |
3
|
|
2019 |
8. |
V. F. Formalev, S. A. Kolesnik, “On thermal solitons with wave heat transfer in restricted areas”, TVT, 57:4 (2019), 543–547 ; High Temperature, 57:4 (2019), 498–502 |
32
|
9. |
V. F. Formalev, S. A. Kolesnik, E. L. Kuznetsova, “Effect of components of the heat conductivity tensor of heat-protection material on the value of heat fluxes from the gasdynamic boundary layer”, TVT, 57:1 (2019), 66–71 ; High Temperature, 57:1 (2019), 58–62 |
26
|
|
2018 |
10. |
V. F. Formalev, S. A. Kolesnik, E. L. Kuznetsova, “Wave heat transfer in the orthotropic half-space under the action of a nonstationary point source of thermal energy”, TVT, 56:5 (2018), 756–760 ; High Temperature, 56:5 (2018), 727–731 |
23
|
11. |
V. F. Formalev, S. A. Kolesnik, E. L. Kuznetsova, “On the wave heat transfer at times comparable with the relaxation time upon intensive convective-conductive heating”, TVT, 56:3 (2018), 412–416 ; High Temperature, 56:3 (2018), 393–397 |
23
|
|
2017 |
12. |
V. F. Formalev, S. A. Kolesnik, E. L. Kuznetsova, “Time-dependent heat transfer in a plate with anisotropy of general form under the action of pulsed heat sources”, TVT, 55:5 (2017), 778–783 ; High Temperature, 55:5 (2017), 761–766 |
19
|
13. |
V. F. Formalev, S. A. Kolesnik, “On inverse boundary heat-conduction problems for recovery of heat fluxes to anisotropic bodies with nonlinear heat-transfer characteristics”, TVT, 55:4 (2017), 564–569 ; High Temperature, 55:4 (2017), 549–554 |
25
|
14. |
V. F. Formalev, S. A. Kolesnik, I. A. Selin, E. L. Kuznetsova, “Optimal way for choosing parameters of spacecraft’s screen-vacuum heat insulation”, TVT, 55:1 (2017), 108–114 ; High Temperature, 55:1 (2017), 101–106 |
13
|
|
2016 |
15. |
V. F. Formalev, S. A. Kolesnik, E. L. Kuznetsova, “Nonstationary heat transfer in anisotropic half-space under the conditions of heat exchange with the environment having a specified temperature”, TVT, 54:6 (2016), 876–882 ; High Temperature, 54:6 (2016), 824–830 |
24
|
16. |
V. F. Formalev, S. A. Kolesnik, E. L. Kuznetsova, L. N. Rabinskii, “Heat and mass transfer in thermal protection composite materials upon high temperature loading”, TVT, 54:3 (2016), 415–422 ; High Temperature, 54:3 (2016), 390–396 |
29
|
|
2015 |
17. |
V. F. Formalev, S. A. Kolesnik, E. L. Kuznetsova, “Modeling conjugate heat transfer in packets of small-size planar gas-dynamic cooled nozzles”, TVT, 53:5 (2015), 735–740 ; High Temperature, 53:5 (2015), 697–702 |
9
|
18. |
V. F. Formalev, E. L. Kuznetsova, L. N. Rabinskii, “Localization of thermal disturbances in nonlinear anisotropic media with absorption”, TVT, 53:4 (2015), 579–584 ; High Temperature, 53:4 (2015), 548–553 |
17
|
19. |
S. A. Kolesnik, V. F. Formalev, E. L. Kuznetsova, “The inverse boundary thermal conductivity problem of recovery of heat fluxes to the boundries of anisotropic bodies”, TVT, 53:1 (2015), 72–77 ; High Temperature, 53:1 (2015), 68–72 |
28
|
|
2014 |
20. |
V. F. Formalev, L. N. Rabinskii, “Wave heat transfer in anisotropic space with nonlinear characteristics”, TVT, 52:5 (2014), 704–709 ; High Temperature, 52:5 (2014), 675–680 |
8
|
|
2013 |
21. |
V. F. Formalev, S. A. Kolesnik, “A methodology for solving inverse coefficient problems of determining nonlinear thermophysical characteristics of anisotropic bodies”, TVT, 51:6 (2013), 875–883 ; High Temperature, 51:6 (2013), 795–803 |
21
|
|
2012 |
22. |
V. F. Formalev, “Thermal shock waves in nonlinear solid media”, TVT, 50:6 (2012), 799–803 ; High Temperature, 50:6 (2012), 744–748 |
13
|
|
2010 |
23. |
V. F. Formalyov, I. A. Selin, E. L. Kuznetcova, “Simulation of Heat Waves in An Nonlinear Anisotropic Space”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(20) (2010), 239–243 |
|
2009 |
24. |
V. F. Formalev, S. A. Kolesnik, E. L. Kuznetsova, “The effect of longitudinal nonisothermality on conjugate heat transfer between wall gasdynamic flows and blunt anisotropic bodies”, TVT, 47:2 (2009), 247–253 ; High Temperature, 47:2 (2009), 228–234 |
24
|
|
2007 |
25. |
V. F. Formalev, S. A. Kolesnik, “Conjugate heat transfer between wall gasdynamic flows and anisotropic bodies”, TVT, 45:1 (2007), 85–93 ; High Temperature, 45:1 (2007), 76–84 |
26
|
|
2006 |
26. |
V. F. Formalev, G. V. Fedotenkov, E. L. Kuznetsova, “Heat transfer under conditions of phase transitions in bodies with anisotropic properties”, TVT, 44:5 (2006), 756–763 ; High Temperature, 44:5 (2006), 752–759 |
4
|
27. |
V. F. Formalev, S. A. Kolesnik, A. A. Chipashvili, “An analytical investigation of heat and mass transfer under conditions of film cooling of bodies”, TVT, 44:1 (2006), 107–112 ; High Temperature, 44:1 (2006), 108–114 |
9
|
|
2004 |
28. |
V. F. Formalev, S. A. Kolesnik, A. A. Chipashvili, “Chipashvili. Numeric simulation of heat transfer in anisotropic bodies with discontinuous parameters”, Matem. Mod., 16:5 (2004), 94–102 |
2
|
|
2003 |
29. |
V. F. Formalev, S. A. Kolesnik, “Analytical simulation of heat condition of anisotropic plate with heat exchange at free boundaries”, Matem. Mod., 15:6 (2003), 107–110 |
2
|
30. |
V. F. Formalev, S. A. Kolesnik, S. V. Mikanev, “Simulation of the thermal state of composite materials”, TVT, 41:6 (2003), 935–941 ; High Temperature, 41:6 (2003), 832–838 |
5
|
|
2002 |
31. |
V. F. Formalev, S. A. Kolesnik, “An Analytical Study into Conjugate Heat Transfer on the Boundaries of Anisotropic Bodies”, TVT, 40:6 (2002), 993–999 ; High Temperature, 40:6 (2002), 926–932 |
4
|
|
2001 |
32. |
V. F. Formalev, S. A. Kolesnik, “Analytic solution of second initial boundary problem of anisotropic heat conduction”, Matem. Mod., 13:7 (2001), 21–25 |
2
|
33. |
V. F. Formalev, “Heat and mass transfer in anisotropic bodies”, TVT, 39:5 (2001), 810–832 ; High Temperature, 39:5 (2001), 753–774 |
16
|
|
2000 |
34. |
V. F. Formalev, “Noniteration method of numerical solution for conjugated problems of boundary layer and anisotropic heat conduction”, Matem. Mod., 12:6 (2000), 35–38 |
2
|
|
1999 |
35. |
V. F. Formalev, V. A. Golovanov, “A study of conjugate heat transfer between boundary layer and bodies possessing anisotropic properties”, TVT, 37:5 (1999), 772–778 ; High Temperature, 37:5 (1999), 742–748 |
|
1998 |
36. |
V. F. Formalev, O. A. Tyukin, “Investigation of three-dimensional nonstationary thermal conductivity in anisotropic bodies, based on analytical solution of the problem”, TVT, 36:2 (1998), 239–245 ; High Temperature, 36:2 (1998), 222–229 |
|
1997 |
37. |
V. F. Formalev, “Simulation of nonlinear nonisothermal filtration under the conditions of film cooling of anisotropic bodies”, TVT, 35:2 (1997), 286–292 ; High Temperature, 35:2 (1997), 283–289 |
2
|
|
1996 |
38. |
V. F. Formalev, O. A. Tyukin, “Implicit economizing method for numerical solution of problems containing mixed derivatives”, Matem. Mod., 8:6 (1996), 27–32 |
1
|
|
1994 |
39. |
V. F. Formalev, O. A. Tyukin, “Temperature field studies on the basis of an analytic solution of the two-dimensional problem of anisotropic thermal conductivity”, TVT, 32:4 (1994), 518–523 ; High Temperature, 32:4 (1994), 483–488 |
3
|
|
1992 |
40. |
V. F. Formalev, “Numerical investigation of associated heat exchange under conditions of filtration and film cooling of blunt anisotropic bodies”, TVT, 30:2 (1992), 334–344 ; High Temperature, 30:2 (1992), 266–276 |
1
|
|
1990 |
41. |
V. F. Formalev, A. A. Moskalenko, “Analytic solution of a three-dimensional time-dependent heat conduction problem with heat conduction tensor”, Differ. Uravn., 26:7 (1990), 1277–1279 |
42. |
V. F. Formalev, “Analysis of two-dimensional temperature fields in anisotropic bodies with allowance for moving boundaries and a high degree of anisotropy”, TVT, 28:4 (1990), 715–721 ; High Temperature, 28:4 (1990), 535–541 |
1
|
|
1988 |
43. |
V. F. Formalev, “Two-dimensional nonlinear heat-conduction problems in anisotropic bodies”, TVT, 26:6 (1988), 1122–1127 ; High Temperature, 26:6 (1988), 868–874 |
|
Organisations |
|
|
|
|