|
|
Publications in Math-Net.Ru |
Citations |
|
1987 |
1. |
K. M. Slepenchuk, “Theorems of Tauberian type for matrix transformations of series”, Trudy Mat. Inst. Steklov., 180 (1987), 200–201 ; Proc. Steklov Inst. Math., 180 (1989), 236–237 |
|
1985 |
2. |
K. M. Slepenchuk, “Representation of an analytic function of two variables by means of an infinite product”, Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 3, 81–83 ; Soviet Math. (Iz. VUZ), 29:3 (1985), 105–107 |
|
1981 |
3. |
K. M. Slepenchuk, “Conditions of absolute and strong summability in degree $p$ of series”, Izv. Vyssh. Uchebn. Zaved. Mat., 1981, no. 10, 79–82 ; Soviet Math. (Iz. VUZ), 25:10 (1981), 97–100 |
|
1977 |
4. |
K. M. Slepenchuk, “Theorems of Tauberian type for matrix transformations and their application to Borel's method”, Izv. Vyssh. Uchebn. Zaved. Mat., 1977, no. 11, 100–105 ; Soviet Math. (Iz. VUZ), 21:11 (1977), 83–87 |
5. |
K. M. Slepenchuk, “Absolute and strong $p$th power summability $(p>1)$ of double series by matrix methods, and theorems of Tauberian type for these methods”, Izv. Vyssh. Uchebn. Zaved. Mat., 1977, no. 7, 76–86 ; Soviet Math. (Iz. VUZ), 21:7 (1977), 62–70 |
|
1975 |
6. |
K. M. Slepenchuk, N. S. Novikova, N. I. Udalaya, “Сильная суммируемость рядов матричными методами, II”, Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 12, 53–63 |
7. |
K. M. Slepenchuk, N. S. Novikova, N. I. Udalaya, “Сильная суммируемость рядов матричными методами, I”, Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 11, 78–88 |
8. |
K. M. Slepenchuk, “Strong summability of double series by matrix methods and Tauberian theorems for these methods”, Mat. Zametki, 17:3 (1975), 391–400 ; Math. Notes, 17:3 (1975), 227–232 |
|
1974 |
9. |
K. M. Slepenchuk, N. I. Udalaya, “Absolute summability of series by matrix methods. II”, Izv. Vyssh. Uchebn. Zaved. Mat., 1974, no. 7, 72–82 |
10. |
K. M. Slepenchuk, N. I. Udalaya, “Absolute summability of series by matrix methods. I”, Izv. Vyssh. Uchebn. Zaved. Mat., 1974, no. 6, 65–73 |
|
1971 |
11. |
K. M. Slepenchuk, “Certain tests for the convergence of infinite products”, Izv. Vyssh. Uchebn. Zaved. Mat., 1971, no. 1, 69–72 |
|
1970 |
12. |
K. M. Slepenchuk, “Absolute summability of infinite products”, Izv. Vyssh. Uchebn. Zaved. Mat., 1970, no. 6, 107–111 |
13. |
K. M. Slepenchuk, “Conditions for the uniform convergence of infinite products”, Izv. Vyssh. Uchebn. Zaved. Mat., 1970, no. 3, 82–86 |
|
1969 |
14. |
K. M. Slepenchuk, “A certain general Tauberian type theorem for absolute summability of series, and its application to the Borel method”, Izv. Vyssh. Uchebn. Zaved. Mat., 1969, no. 3, 61–65 |
|
1968 |
15. |
K. M. Slepenchuk, “The anThe analogue of a certain Tauberian type theorem for infinite products”, Izv. Vyssh. Uchebn. Zaved. Mat., 1968, no. 4, 70–71 |
16. |
K. M. Slepenchuk, “Tauberian type theorems for matrix methods of summation of series and their application”, Izv. Vyssh. Uchebn. Zaved. Mat., 1968, no. 1, 92–97 |
|
1967 |
17. |
K. M. Slepenchuk, “A general theorem of Tauberian type and its application to $(I^\ast,p_n,\lambda)-methods$”, Izv. Vyssh. Uchebn. Zaved. Mat., 1967, no. 12, 58–64 |
18. |
K. M. Slepenchuk, “A general Tauberian theorem for infinite products”, Izv. Vyssh. Uchebn. Zaved. Mat., 1967, no. 8, 72–75 |
19. |
K. M. Slepenchuk, “On the question of an analog of Abel's theorem for infinite products”, Izv. Vyssh. Uchebn. Zaved. Mat., 1967, no. 2, 64–66 |
|
1966 |
20. |
K. M. Slepenchuk, “Summation of integrals by the Hölder and Cesàro methods of negative order”, Izv. Vyssh. Uchebn. Zaved. Mat., 1966, no. 5, 112–117 |
|
1965 |
21. |
K. M. Slepenchuk, “Theorems of Tauberian type for absolute summability by Abel methods”, Izv. Vyssh. Uchebn. Zaved. Mat., 1965, no. 6, 135–139 |
22. |
K. M. Slepenchuk, “The absolute summability of series by Cesàro methods of negative order”, Izv. Vyssh. Uchebn. Zaved. Mat., 1965, no. 5, 128–131 |
23. |
K. M. Slepenchuk, “Summation of double series by the generalized Hölder method”, Izv. Vyssh. Uchebn. Zaved. Mat., 1965, no. 4, 126–131 |
24. |
K. M. Slepenchuk, “The summation of series by $(C_\theta,\,\lambda)$-methods”, Izv. Vyssh. Uchebn. Zaved. Mat., 1965, no. 2, 166–170 |
25. |
K. M. Slepenchuk, “Tauberian theorems for generalized Hölder methods of negative order”, Izv. Vyssh. Uchebn. Zaved. Mat., 1965, no. 1, 146–152 |
|
1964 |
26. |
K. M. Slepenchuk, “Tauberian theorems for certain methods of summation of double series”, Izv. Vyssh. Uchebn. Zaved. Mat., 1964, no. 6, 153–158 |
1
|
27. |
K. M. Slepenčuk, “Tauberian theorems for certain methods of summing series”, Izv. Vyssh. Uchebn. Zaved. Mat., 1964, no. 5, 100–103 |
28. |
K. M. Slepenchuk, “Theorems of Tauberian type for $(C_\theta^{(\alpha)},\lambda)$-methods of summing series”, Izv. Vyssh. Uchebn. Zaved. Mat., 1964, no. 3, 131–135 |
29. |
K. M. Slepenchuk, “Non-linear transformations of some classes of sequences (products)”, Izv. Vyssh. Uchebn. Zaved. Mat., 1964, no. 2, 144–151 |
|
1963 |
30. |
K. M. Slepenchuk, “Some special summation methods for infinite products”, Izv. Vyssh. Uchebn. Zaved. Mat., 1963, no. 6, 133–137 |
|
1955 |
31. |
K. M. Slepenchuk, “On a property of infinite products”, Uspekhi Mat. Nauk, 10:1(63) (1955), 151–153 |
|
1953 |
32. |
K. M. Slepenchuk, “Representation of an analytic function of two variables by means of a double infinite product”, Uspekhi Mat. Nauk, 8:2(54) (1953), 139–142 |
|
Organisations |
|
|
|
|