Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Shamaev, Elley Ivanovitch

Senior Researcher
Candidate of physico-mathematical sciences (2005)
Speciality: 01.01.04 (Geometry and topology)
Birth date: 13.01.1978
E-mail:
Keywords: minimal surfaces, willmore surfaces.
UDC: 514.752.437

Subject:

Differential geometry: minimal surfaces, willmore surfaces in R^3.

Biography

2000 — M.Sc. Novosibirsk State University;
2005 — Ph.D.

   
Main publications:
  • Shamaev E. I. Minimalnye tory s shestyu ploskimi kontsami // Vestnik NGU. Seriya "Matematika, mekhanika, informatika". 2004. T. 4. # 4. S. 68–73.
  • Shamaev E. I. Ob odnom semeistve minimalnykh torov v $\mathbb R^3$ s ploskimi kontsami // Sib. mat. zhurn. 2005. T. 46. # 6. S. 1407–1426.

https://www.mathnet.ru/eng/person29574
https://scholar.google.com/citations?user=Mf15l2gAAAAJ&hl=en
https://zbmath.org/authors/ai:shamaev.eh-i
https://mathscinet.ams.org/mathscinet/MRAuthorID/775847
https://elibrary.ru/author_items.asp?spin=3860-2586

Publications in Math-Net.Ru Citations
2016
1. E. I. Shamaev, “On discretization of parabolic coordinates”, Sib. Èlektron. Mat. Izv., 13 (2016),  1159–1169  mathnet
2015
2. S. M. Cherosova, D. A. Nogovitsyn, E. I. Shamaev, “On axisymmetric Helfrich surfaces”, Sib. Èlektron. Mat. Izv., 12 (2015),  854–861  mathnet
2014
3. S. M. Cherosova, E. I. Shamaev, “On Willmore Surfaces of Revolution in $\mathbb{R}^3$”, Sib. Èlektron. Mat. Izv., 11 (2014),  887–890  mathnet
4. V. N. Davletshina, E. I. Shamaev, “On commuting differential operators of rank $2$”, Sibirsk. Mat. Zh., 55:4 (2014),  744–749  mathnet  mathscinet; Siberian Math. J., 55:4 (2014), 606–610  isi  scopus 6
2013
5. E. I. Shamaev, “The discrete geometric bisectors flow of strictly convex polygons and its convergence questions”, Sib. Èlektron. Mat. Izv., 10 (2013),  641–648  mathnet
6. E. I. Shamaev, “On Darboux–Egorov lattices”, Sib. Èlektron. Mat. Izv., 10 (2013),  113–122  mathnet 2
2005
7. E. I. Shamaev, “On one family of minimal tori in $\mathbb R^3$ with planar embedded ends”, Sibirsk. Mat. Zh., 46:6 (2005),  1407–1426  mathnet  mathscinet  zmath; Siberian Math. J., 46:6 (2005), 1135–1152  isi 5

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025