|
|
Publications in Math-Net.Ru |
Citations |
|
2023 |
1. |
V. A. Kosyakov, R. V. Fursenko, S. S. Minaev, V. M. Chudnovskii, “Physical mechanisms of vapor bubble collapse during laser-induced boiling”, Prikl. Mekh. Tekh. Fiz., 64:6 (2023), 109–113 ; J. Appl. Mech. Tech. Phys., 64:6 (2024), 1036–1040 |
|
2022 |
2. |
V. A. Kosyakov, A. D. Zakharov, R. V. Fursenko, “Numerical study of the solid walls effect on the velocity of a liquid jet formed as the result of vapor bubble collapse near a rod”, Dal'nevost. Mat. Zh., 22:2 (2022), 185–189 |
1
|
|
2014 |
3. |
F. S. Palesskii, R. V. Fursenko, S. S. Minaev, “Modeling of filtration combustion of gases in a cylindrical porous burner with allowance for radiative heat transfer”, Fizika Goreniya i Vzryva, 50:6 (2014), 3–10 ; Combustion, Explosion and Shock Waves, 50:6 (2014), 625–631 |
18
|
4. |
D. B. Mazurok, R. V. Fursenko, S. S. Minaev, N. A. Lutsenko, S. Kumar, “Regimes of combustion of a premixed mixture of gases in a heated microchannel with the wall temperature smoothly increasing in the downstream direction”, Fizika Goreniya i Vzryva, 50:1 (2014), 30–36 ; Combustion, Explosion and Shock Waves, 50:1 (2014), 25–31 |
6
|
|
2012 |
5. |
F. S. Palesskii, S. S. Minaev, R. V. Fursenko, V. K. Baev, A. I. Kirdyashkin, V. M. Orlovskii, “Modeling of combustion of premixed mixtures of gases in an expanding channel with allowance for radiative heat losses”, Fizika Goreniya i Vzryva, 48:1 (2012), 21–27 ; Combustion, Explosion and Shock Waves, 48:1 (2012), 17–23 |
7
|
|
2011 |
6. |
S. S. Minaev, R. V. Fursenko, “Inertial effects in nonstationary models of flame front evolution”, Fizika Goreniya i Vzryva, 47:4 (2011), 24–33 ; Combustion, Explosion and Shock Waves, 47:4 (2011), 394–402 |
|
2009 |
7. |
R. V. Fursenko, S. S. Minaev, K.-L. Pan, “Hydrodynamic instability of inward-propagating flames”, Fizika Goreniya i Vzryva, 45:5 (2009), 8–15 ; Combustion, Explosion and Shock Waves, 45:5 (2009), 511–517 |
4
|
8. |
S. S. Minaev, E. V. Sereshchenko, R. V. Fursenko, A. Fan, K. Maruta, “Splitting flames in a narrow channel with a temperature gradient in the walls”, Fizika Goreniya i Vzryva, 45:2 (2009), 12–19 ; Combustion, Explosion and Shock Waves, 45:2 (2009), 119–125 |
26
|
|
2008 |
9. |
R. V. Fursenko, K. C. Chang, Y. C. Chao, “Specific features of combustion in a variable-section narrow channel with a periodically changing gas flow”, Fizika Goreniya i Vzryva, 44:5 (2008), 16–24 ; Combustion, Explosion and Shock Waves, 44:5 (2008), 509–516 |
3
|
10. |
R. V. Fursenko, S. S. Minaev, K. C. Chang, Y. C. Chao, “Analytical and numerical modeling of a spherical diffusion microflame”, Fizika Goreniya i Vzryva, 44:1 (2008), 3–11 ; Combustion, Explosion and Shock Waves, 44:1 (2008), 1–8 |
2
|
|
2007 |
11. |
S. S. Minaev, R. V. Fursenko, “Estimates of efficiency of a small-size thermoelectric channel in terms of conversion of heat produced by gas combustion to electric power”, Fizika Goreniya i Vzryva, 43:4 (2007), 15–22 ; Combustion, Explosion and Shock Waves, 43:4 (2007), 384–390 |
5
|
|
2005 |
12. |
R. V. Fursenko, S. S. Minaev, “Flame stability in a system with counterflow heat exchange”, Fizika Goreniya i Vzryva, 41:2 (2005), 17–25 ; Combustion, Explosion and Shock Waves, 41:2 (2005), 133–139 |
17
|
|
2004 |
13. |
K. Maruta, J. K. Parc, K. Ch. Oh, T. Fujimori, S. S. Minaev, R. V. Fursenko, “Characteristics of microscale combustion in a narrow heated channel”, Fizika Goreniya i Vzryva, 40:5 (2004), 21–29 ; Combustion, Explosion and Shock Waves, 40:5 (2004), 516–523 |
115
|
|
2003 |
14. |
R. V. Fursenko, “On the behavior of the solution of the problem of the propagation of a plane adiabatic flame for large values of activation energy”, Sib. Zh. Ind. Mat., 6:4 (2003), 132–141 |
1
|
|
2001 |
15. |
R. V. Fursenko, S. S. Minaev, V. S. Babkin, “Thermal interaction of two flame fronts propagating in channels with opposing gas flows”, Fizika Goreniya i Vzryva, 37:5 (2001), 3–11 ; Combustion, Explosion and Shock Waves, 37:5 (2001), 493–500 |
21
|
|
Organisations |
|
|
|
|