V. L. Chernyshev,A. I. Shafarevich, “Statistics of gaussian packets on metric and decorated graphs”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering, 372:2007 (2014), 20130145 , 11 pp.
V. L. Chernyshev, “Time-dependent Schrödinger equation: statistics of the distribution of Gaussian packets on a metric graph”, Proc. Steklov Inst. Math., 270 (2010), 246–262
3.
V. L. Chernyshev, A. I. Shafarevich, “Semiclassical Spectrum of the Schrödinger Operator on a Geometric Graph”, Math. Notes, 82:4 (2007), 542–554
4.
A. A. Tolchennikov, V. L. Chernyshev, A. I. Shafarevich, “Asymptotic properties and classical dynamical systems in quantum problems on singular spaces”, Nelin. Dinam., 6:3 (2010), 623–638
5.
Vsevolod L. Chernyshev, Anton A. Tolchennikov, “The Second Term in the Asymptotics for the Number of Points Moving Along a Metric Graph”, Regul. Chaotic Dyn., 22:8 (2017), 937–948
Vsevolod L. Chernyshev, Anton A. Tolchennikov, Andrei I. Shafarevich, “Behavior of Quasi-particles on Hybrid Spaces. Relations to the Geometry of Geodesics and to the Problems of Analytic Number Theory”, Regul. Chaotic Dyn., 21:5 (2016), 531–537
D. S. Minenkov, V. E. Nazaikinskii, V. L. Chernyshev, “On the Asymptotics of the Element Counting Function in an Additive Arithmetic Semigroup with Exponential Counting Function of Prime Generators”, Funct. Anal. Appl., 50:4 (2016), 291–307
8.
V. L. Chernyshev, D. S. Minenkov, A. A. Tolchennikov, “The number of endpoints of a random walk on a semi-infinite metric path graph”, Theoret. and Math. Phys., 207:1 (2021), 487–493
9.
Minenkov D.S., Nazaikinskii V.E., Chernyshev V.L, “On the Bose.Maslov statistics in the case of infinitely many degrees of freedom”, Doklady Mathematics, 99:3 (2016), 326–328
D. V. Pyatko, V. L. Chernyshev, “Asymptotics of the Number of End Positions of a Random Walk on a Directed Hamiltonian Metric Graph”, Math. Notes, 113:4 (2023), 538–551
11.
D. S. Minenkov, V. E. Nazaikinskii, T. W. Hilberdink, V. L. Chernyshev, “Restricted partions: the polynomial case”, Funct. Anal. Appl., 56:4 (2022), 299–309
12.
V.L. Chernyshev, “Semiclassical spectral series of a quantum Schr$\ddot o$dinger operator corresponding to a singular circle composed of equilibria”, Russian Journal of Mathematical Physics, 23:3 (2016), 348-354