|
|
Publications in Math-Net.Ru |
Citations |
|
2022 |
1. |
M. G. Gadoev, T. P. Konstantinova, “The variationall Dirichlet problem with nonhomogeneous boundary conditions for degenerate elliptic operators”, Mathematical notes of NEFU, 29:2 (2022), 3–18 |
|
2019 |
2. |
M. G. Gadoev, S. A. Iskhokov, F. S. Iskhokov, “On separation of a class of degenerate differential operators in the Lebesgue space”, Chebyshevskii Sb., 20:4 (2019), 86–107 |
|
2018 |
3. |
M. G. Gadoev, F. S. Iskhokov, “On relative boundedness of a class of degenerate differential operators in the lebesgue space”, Mathematical notes of NEFU, 25:1 (2018), 3–14 |
|
2016 |
4. |
M. G. Gadoev, F. S. Iskhokov, “On invertibility of a class of degenerate differential operators in the Lebesgue space”, Mathematical notes of NEFU, 23:3 (2016), 3–26 |
5. |
S. A. Iskhokov, M. G. Gadoev, M. N. Petrova, “On some spectral properties of a class of degenerate elliptic differential operators”, Mathematical notes of NEFU, 23:2 (2016), 31–50 |
6. |
S. A. Iskhokov, M. G. Gadoev, I. Ya. Yakushev, “Gårding inequality for higher order elliptic operators with a non-power degeneration and its applications”, Ufimsk. Mat. Zh., 8:1 (2016), 54–71 ; Ufa Math. J., 8:1 (2016), 51–67 |
1
|
|
2013 |
7. |
M. G. Gadoev, S. A. Iskhokov, “Spectral properties of degenerate elliptic operators with matrix coefficients”, Ufimsk. Mat. Zh., 5:4 (2013), 38–50 ; Ufa Math. J., 5:4 (2013), 37–48 |
2
|
|
2011 |
8. |
M. G. Gadoev, “Spectral asymptotics of nonselfadjoint degenerate elliptic operators with singular matrix coefficients on an interval”, Ufimsk. Mat. Zh., 3:3 (2011), 26–54 |
4
|
|
2008 |
9. |
K. Kh. Boimatov, I. E. Egorov, M. G. Gadoev, “Strongly continuous semigroups of operators generated by systems of pseudodifferential operators in weighted $L_p$-spaces”, Fundam. Prikl. Mat., 14:8 (2008), 3–54 ; J. Math. Sci., 166:5 (2010), 563–602 |
|
2006 |
10. |
M. G. Gadoev, “Asymptotics of the spectrum of second-order nonselfadjoint degenerate elliptic differential operators on an interval”, Sib. Zh. Ind. Mat., 9:2 (2006), 31–43 ; J. Appl. Industr. Math., 2:1 (2008), 57–67 |
1
|
|
2003 |
11. |
M. G. Gadoev, S. I. Konobulov, “Conditions for the Positivity and Coercive Solvability of the Matrix Schrödinger Operator in Banach Spaces of Vector Functions”, Differ. Uravn., 39:6 (2003), 850–851 ; Differ. Equ., 39:6 (2003), 899–900 |
12. |
M. G. Gadoev, S. I. Konobulov, “Coercive solvability of elliptic operators in Banach spaces”, Sib. Zh. Ind. Mat., 6:2 (2003), 26–30 |
2
|
|
1988 |
13. |
M. Gadoev, “Convergence of the particle method for a three-dimensional system of Vlasov equations”, Zh. Vychisl. Mat. Mat. Fiz., 28:1 (1988), 112–118 ; U.S.S.R. Comput. Math. Math. Phys., 28:1 (1988), 74–79 |
|
1985 |
14. |
M. Gadoev, “Convergence of a particle method for a two-dimensional system of Vlasov equations”, Zh. Vychisl. Mat. Mat. Fiz., 25:7 (1985), 1050–1056 ; U.S.S.R. Comput. Math. Math. Phys., 25:4 (1985), 56–60 |
|
Organisations |
|
|
|
|