|
|
Publications in Math-Net.Ru |
Citations |
|
2022 |
1. |
V. G. Osmolovskii, “Comparision of properties of solutions of variational problems of the theory of two-phase elastic bodies in model and traditional formulations”, Zap. Nauchn. Sem. POMI, 519 (2022), 188–204 |
|
2021 |
2. |
V. G. Osmolovskii, “One-dimensional problem of phase transitions in the mechanics of a continous medium at a variable temperature”, Zap. Nauchn. Sem. POMI, 508 (2021), 134–146 |
|
2019 |
3. |
V. G. Osmolovskii, “Behavior of the solutions for one-sides varittional problems in two-phase continuum mechanics for a big temperature”, Funktsional. Anal. i Prilozhen., 53:4 (2019), 38–51 |
|
2017 |
4. |
V. G. Osmolovskiĭ, “Mathematical problems in the theory of phase transitions in continuum mechanics”, Algebra i Analiz, 29:5 (2017), 111–178 ; St. Petersburg Math. J., 29:5 (2018), 793–839 |
9
|
5. |
V. G. Osmolovskii, “The volume fraction of one of the phases in equilibrium two-phase elastic medium”, Zap. Nauchn. Sem. POMI, 459 (2017), 66–82 ; J. Math. Sci. (N. Y.), 236:4 (2019), 419–429 |
7
|
|
2010 |
6. |
V. G. Osmolovskiĭ, “A variational problem of phase transitions for a two-phase elastic medium with zero coefficient of surface tension”, Algebra i Analiz, 22:6 (2010), 214–234 ; St. Petersburg Math. J., 22:6 (2011), 1007–1022 |
7
|
|
2004 |
7. |
V. G. Osmolovskii, “Dependence of equilibrium states of a two-phase elastic medium on temperature for a positive coefficient of surface tension”, Zap. Nauchn. Sem. POMI, 318 (2004), 220–232 ; J. Math. Sci. (N. Y.), 136:2 (2006), 3778–3785 |
1
|
8. |
V. G. Osmolovskii, “Dependence of the phase transition temperature on the domain size”, Zap. Nauchn. Sem. POMI, 310 (2004), 98–113 ; J. Math. Sci. (N. Y.), 132:3 (2006), 304–312 |
3
|
|
2002 |
9. |
V. G. Osmolovskii, “Equilibrium states of stratified two-phase bodies under given boundary loads”, Zap. Nauchn. Sem. POMI, 288 (2002), 134–151 ; J. Math. Sci. (N. Y.), 123:6 (2004), 4597–4606 |
|
2000 |
10. |
V. G. Osmolovskii, “Association of character of states of an equilibrium of a two-phase elastic medium on parameters of a problem”, Zap. Nauchn. Sem. POMI, 271 (2000), 175–187 ; J. Math. Sci. (N. Y.), 115 (2003), 2803–2810 |
1
|
|
1999 |
11. |
V. G. Osmolovskii, “Matching of two modes of the registration of surface energy for a problem about phase transitions in a thermoelasticity”, Zap. Nauchn. Sem. POMI, 259 (1999), 182–194 ; J. Math. Sci. (New York), 109:5 (2002), 1940–1949 |
|
1997 |
12. |
V. G. Osmolovskii, “Martenoitic-anotenitic phase transformation variation problem for zero ourface tension coefficient”, Zap. Nauchn. Sem. POMI, 249 (1997), 231–243 ; J. Math. Sci. (New York), 101:5 (2000), 3523–3530 |
13. |
V. G. Osmolovskii, “Free boundary surface bifurcation in the phase transition problem of elasticity”, Zap. Nauchn. Sem. POMI, 243 (1997), 169–200 ; J. Math. Sci. (New York), 99:1 (2000), 907–926 |
|
1995 |
14. |
V. G. Osmolovski, “Variational problem of the two-phase medium elasticity theory for the zero surface tension coefficient”, Zap. Nauchn. Sem. POMI, 221 (1995), 208–225 ; J. Math. Sci. (New York), 87:2 (1997), 3409–3420 |
|
1994 |
15. |
V. G. Osmolovskii, “An existence theorem and weak Lagrange equations for a variational problem of the theory of phase transitions”, Sibirsk. Mat. Zh., 35:4 (1994), 835–846 ; Siberian Math. J., 35:4 (1994), 743–753 |
20
|
16. |
V. G. Osmolovskii, “Linear perturbations of the operator div”, Sibirsk. Mat. Zh., 35:3 (1994), 647–656 ; Siberian Math. J., 35:3 (1994), 580–589 |
17. |
V. G. Osmolovski, “The connection of the two-phase medium state with the surface-tension coefficient and temperature”, Zap. Nauchn. Sem. POMI, 213 (1994), 131–150 ; J. Math. Sci. (New York), 84:1 (1997), 898–910 |
1
|
|
1988 |
18. |
V. G. Osmolovskii, “Rigidity of a surface with respect to deformations that satisfy first-order nonlinear differential equations”, Trudy Mat. Inst. Steklov., 179 (1988), 165–173 ; Proc. Steklov Inst. Math., 179 (1989), 183–192 |
|
1986 |
19. |
V. G. Osmolovskii, “The local structure of the solution set of a first-order nonlinear boundary value problem with constraints at points”, Sibirsk. Mat. Zh., 27:5 (1986), 140–154 ; Siberian Math. J., 27:5 (1986), 744–756 |
|
1982 |
20. |
V. G. Osmolovskii, “An incompressibility condition for a certain class of integral functionals. I”, Zap. Nauchn. Sem. LOMI, 115 (1982), 203–214 ; J. Soviet Math., 28:5 (1985), 759–767 |
2
|
|
1981 |
21. |
V. G. Osmolovskii, “On the local solvability of a problem of the non-linear theory of elasticity”, Zap. Nauchn. Sem. LOMI, 110 (1981), 163–173 ; J. Soviet Math., 25:1 (1984), 918–926 |
1
|
22. |
V. G. Osmolovskii, V. Ya. Rivkind, “A method of separating the domains for elliptic equations with discontinuous coefficients”, Zh. Vychisl. Mat. Mat. Fiz., 21:1 (1981), 35–39 ; U.S.S.R. Comput. Math. Math. Phys., 21:1 (1981), 33–38 |
2
|
|
1977 |
23. |
V. G. Osmolovskii, “The nonlinear problem of the symmetric deformation of a hollow sphere”, Zap. Nauchn. Sem. LOMI, 69 (1977), 149–156 ; J. Soviet Math., 10:1 (1978), 104–109 |
1
|
|
1975 |
24. |
V. G. Osmolovskii, “On the free surface of the drop in the symmetrical power field”, Zap. Nauchn. Sem. LOMI, 52 (1975), 160–174 |
2
|
|
1974 |
25. |
V. G. Osmolovskii, “The asymptotic behavior of the eigenoscillations of an elliptic membrane”, Zh. Vychisl. Mat. Mat. Fiz., 14:2 (1974), 365–378 ; U.S.S.R. Comput. Math. Math. Phys., 14:2 (1974), 91–103 |
|
|
|
2002 |
26. |
A. A. Arkhipova, M. S. Birman, V. S. Buslaev, V. G. Osmolovskii, S. I. Repin, G. A. Seregin, N. N. Ural'tseva, T. N. Shilkin, “To the jubillee of O. A. Ladyzhenskaya”, Zap. Nauchn. Sem. POMI, 288 (2002), 5–13 ; J. Math. Sci. (N. Y.), 123:6 (2004), 4523–4526 |
2
|
|
Presentations in Math-Net.Ru |
|
|
Organisations |
|
|
|
|