Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Osmolovskii, Victor Georgievich

Statistics Math-Net.Ru
Total publications: 26
Scientific articles: 25
Presentations: 3

Number of views:
This page:1747
Abstract pages:4833
Full texts:1705
References:267
Professor
Doctor of physico-mathematical sciences
E-mail:

https://www.mathnet.ru/eng/person29025
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/207634

Publications in Math-Net.Ru Citations
2022
1. V. G. Osmolovskii, “Comparision of properties of solutions of variational problems of the theory of two-phase elastic bodies in model and traditional formulations”, Zap. Nauchn. Sem. POMI, 519 (2022),  188–204  mathnet
2021
2. V. G. Osmolovskii, “One-dimensional problem of phase transitions in the mechanics of a continous medium at a variable temperature”, Zap. Nauchn. Sem. POMI, 508 (2021),  134–146  mathnet
2019
3. V. G. Osmolovskii, “Behavior of the solutions for one-sides varittional problems in two-phase continuum mechanics for a big temperature”, Funktsional. Anal. i Prilozhen., 53:4 (2019),  38–51  mathnet  mathscinet
2017
4. V. G. Osmolovskiĭ, “Mathematical problems in the theory of phase transitions in continuum mechanics”, Algebra i Analiz, 29:5 (2017),  111–178  mathnet  mathscinet  elib; St. Petersburg Math. J., 29:5 (2018), 793–839  isi  scopus 9
5. V. G. Osmolovskii, “The volume fraction of one of the phases in equilibrium two-phase elastic medium”, Zap. Nauchn. Sem. POMI, 459 (2017),  66–82  mathnet; J. Math. Sci. (N. Y.), 236:4 (2019), 419–429 7
2010
6. V. G. Osmolovskiĭ, “A variational problem of phase transitions for a two-phase elastic medium with zero coefficient of surface tension”, Algebra i Analiz, 22:6 (2010),  214–234  mathnet  mathscinet  zmath; St. Petersburg Math. J., 22:6 (2011), 1007–1022  isi  scopus 7
2004
7. V. G. Osmolovskii, “Dependence of equilibrium states of a two-phase elastic medium on temperature for a positive coefficient of surface tension”, Zap. Nauchn. Sem. POMI, 318 (2004),  220–232  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 136:2 (2006), 3778–3785 1
8. V. G. Osmolovskii, “Dependence of the phase transition temperature on the domain size”, Zap. Nauchn. Sem. POMI, 310 (2004),  98–113  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 132:3 (2006), 304–312 3
2002
9. V. G. Osmolovskii, “Equilibrium states of stratified two-phase bodies under given boundary loads”, Zap. Nauchn. Sem. POMI, 288 (2002),  134–151  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 123:6 (2004), 4597–4606
2000
10. V. G. Osmolovskii, “Association of character of states of an equilibrium of a two-phase elastic medium on parameters of a problem”, Zap. Nauchn. Sem. POMI, 271 (2000),  175–187  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 115 (2003), 2803–2810 1
1999
11. V. G. Osmolovskii, “Matching of two modes of the registration of surface energy for a problem about phase transitions in a thermoelasticity”, Zap. Nauchn. Sem. POMI, 259 (1999),  182–194  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 109:5 (2002), 1940–1949
1997
12. V. G. Osmolovskii, “Martenoitic-anotenitic phase transformation variation problem for zero ourface tension coefficient”, Zap. Nauchn. Sem. POMI, 249 (1997),  231–243  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 101:5 (2000), 3523–3530
13. V. G. Osmolovskii, “Free boundary surface bifurcation in the phase transition problem of elasticity”, Zap. Nauchn. Sem. POMI, 243 (1997),  169–200  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 99:1 (2000), 907–926
1995
14. V. G. Osmolovski, “Variational problem of the two-phase medium elasticity theory for the zero surface tension coefficient”, Zap. Nauchn. Sem. POMI, 221 (1995),  208–225  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 87:2 (1997), 3409–3420
1994
15. V. G. Osmolovskii, “An existence theorem and weak Lagrange equations for a variational problem of the theory of phase transitions”, Sibirsk. Mat. Zh., 35:4 (1994),  835–846  mathnet  mathscinet  zmath; Siberian Math. J., 35:4 (1994), 743–753  isi 20
16. V. G. Osmolovskii, “Linear perturbations of the operator div”, Sibirsk. Mat. Zh., 35:3 (1994),  647–656  mathnet  mathscinet  zmath; Siberian Math. J., 35:3 (1994), 580–589  isi
17. V. G. Osmolovski, “The connection of the two-phase medium state with the surface-tension coefficient and temperature”, Zap. Nauchn. Sem. POMI, 213 (1994),  131–150  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 84:1 (1997), 898–910 1
1988
18. V. G. Osmolovskii, “Rigidity of a surface with respect to deformations that satisfy first-order nonlinear differential equations”, Trudy Mat. Inst. Steklov., 179 (1988),  165–173  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 179 (1989), 183–192
1986
19. V. G. Osmolovskii, “The local structure of the solution set of a first-order nonlinear boundary value problem with constraints at points”, Sibirsk. Mat. Zh., 27:5 (1986),  140–154  mathnet  mathscinet  zmath; Siberian Math. J., 27:5 (1986), 744–756  isi
1982
20. V. G. Osmolovskii, “An incompressibility condition for a certain class of integral functionals. I”, Zap. Nauchn. Sem. LOMI, 115 (1982),  203–214  mathnet  mathscinet  zmath; J. Soviet Math., 28:5 (1985), 759–767 2
1981
21. V. G. Osmolovskii, “On the local solvability of a problem of the non-linear theory of elasticity”, Zap. Nauchn. Sem. LOMI, 110 (1981),  163–173  mathnet  mathscinet  zmath; J. Soviet Math., 25:1 (1984), 918–926 1
22. V. G. Osmolovskii, V. Ya. Rivkind, “A method of separating the domains for elliptic equations with discontinuous coefficients”, Zh. Vychisl. Mat. Mat. Fiz., 21:1 (1981),  35–39  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 21:1 (1981), 33–38 2
1977
23. V. G. Osmolovskii, “The nonlinear problem of the symmetric deformation of a hollow sphere”, Zap. Nauchn. Sem. LOMI, 69 (1977),  149–156  mathnet  mathscinet  zmath; J. Soviet Math., 10:1 (1978), 104–109 1
1975
24. V. G. Osmolovskii, “On the free surface of the drop in the symmetrical power field”, Zap. Nauchn. Sem. LOMI, 52 (1975),  160–174  mathnet  mathscinet  zmath 2
1974
25. V. G. Osmolovskii, “The asymptotic behavior of the eigenoscillations of an elliptic membrane”, Zh. Vychisl. Mat. Mat. Fiz., 14:2 (1974),  365–378  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 14:2 (1974), 91–103

2002
26. A. A. Arkhipova, M. S. Birman, V. S. Buslaev, V. G. Osmolovskii, S. I. Repin, G. A. Seregin, N. N. Ural'tseva, T. N. Shilkin, “To the jubillee of O. A. Ladyzhenskaya”, Zap. Nauchn. Sem. POMI, 288 (2002),  5–13  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 123:6 (2004), 4523–4526 2

Presentations in Math-Net.Ru
1. Variational problems concerning phase transitions in continuum mechanics with data depending on the spacial variable
V. G. Osmolovskii
V. I. Smirnov Seminar on Mathematical Physics
November 27, 2023 15:00
2. Phase transition process in the variational problem of two-phase media.
V. G. Osmolovskii
V. I. Smirnov Seminar on Mathematical Physics
March 28, 2022 16:30
3. Variational problems of phase transitions in continuous media mechanics
V. G. Osmolovskii
Meetings of the St. Petersburg Mathematical Society
March 23, 2000

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024