|
|
Publications in Math-Net.Ru |
Citations |
|
2021 |
1. |
V. A. Sadovnichii, V. V. Aleksandrov, T. B. Alexandrova, I. S. Konovalenko, E. Soto, K. V. Tikhonova, N. È. Shulenina, “The galvanic correction of the gaze stabilization neural control: Part 1”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2021, no. 6, 41–47 ; Moscow University Mechanics Bulletin, 76:6 (2021), 163–170 |
|
2019 |
2. |
V. A. Sadovnichii, V. V. Aleksandrov, O. V. Aleksandrova, R. Vega, I. S. Konovalenko, E. Soto, K. V. Tikhonova, J. L. Gordillo-Domínguez, O. Gonazalez, “Galvanic correction of pilot's vestibular activity during visual flight control”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2019, no. 1, 34–41 ; Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 74:1 (2019), 1–8 |
8
|
|
2018 |
3. |
V. V. Aleksandrov, T. B. Alexandrova, R. Vega, V. A. Sadovnichii, G. Yu. Sidorenko, E. Soto, K. V. Tikhonova, N. E. Shulenina, “Mathematical modeling of the information process in the angular acceleration biosensor”, Fundam. Prikl. Mat., 22:2 (2018), 3–18 ; J. Math. Sci., 253:6 (2021), 756–767 |
1
|
|
2015 |
4. |
V. V. Aleksandrov, T. B. Alexandrova, A. Angeles Vasquez, R. Vega, M. Reyes Romero, E. Soto, K. V. Tikhonova, N. È. Shulenina, “An output signal correction algorithm for vestibular mechanoreceptors to simulate passive turns”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2015, no. 5, 67–71 ; Moscow University Mechanics Bulletin, 70:5 (2015), 130–134 |
6
|
|
2013 |
5. |
V. A. Sadovnichii, V. V. Aleksandrov, T. B. Alexandrova, A. A. Konik, V. B. Pakhomov, G. Yu. Sidorenko, E. Soto, K. V. Tikhonova, N. È. Shulenina, “Mathematical simulation of correction of output signals from the gravitoinertial mechanoreceptor of a vestibular apparatus”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2013, no. 5, 54–59 ; Moscow University Mechanics Bulletin, 68:5 (2013), 111–116 |
7
|
|
2008 |
6. |
V. A. Sadovnichii, V. V. Aleksandrov, T. B. Alexandrova, R. Vega, G. Castillo Quiroz, M. Reyes Romero, E. Soto, N. È. Shulenina, “A mathematical model for the generation of output information in a gravitoinertial mechanoreceptor when moving in a sagittal plane”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2008, no. 6, 55–60 |
|
2006 |
7. |
V. V. Aleksandrov, E. Yu. Mikhaleva, E. Soto, R. Garsia-Tamayo, “Modification of a mathematical Hodgkin–Huxley model for primary neurons of the vestibular apparatus”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2006, no. 5, 65–68 |
3
|
|
2005 |
8. |
V. A. Sadovnichii, V. V. Aleksandrov, E. Soto, T. B. Alexandrova, T. G. Astakhova, R. Vega, N. V. Kulikovskaya, V. I. Kurilov, S. S. Migunov, N. E. Shulenina, “A mathematical model of the response of semicircular canal and otolith to vestibular system rotation under gravity”, Fundam. Prikl. Mat., 11:7 (2005), 207–220 ; J. Math. Sci., 146:3 (2007), 5938–5947 |
4
|
|
2002 |
9. |
V. A. Sadovnichii, V. V. Aleksandrov, T. B. Alexandrova, A. Almanza, T. G. Astakhova, R. Vega, N. V. Kulikovskaya, E. Soto, N. È. Shulenina, “A mathematical model for the mechanoreceptor of angular accelerations”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2002, no. 6, 46–54 |
2
|
|
1999 |
10. |
V. V. Aleksandrov, T. B. Alexandrova, T. G. Astakhova, A. G. Yakushev, E. Soto, “Equations of the dynamics of the cupulo-endolymphatic system of vestibular channels”, Differ. Uravn., 35:4 (1999), 523–527 ; Differ. Equ., 35:4 (1999), 523–527 |
1
|
|
Organisations |
|
|
|
|