|
|
Publications in Math-Net.Ru |
Citations |
|
2007 |
1. |
M. N. Podoksenov, “In a Transitive Group of Conformal Transformations, Any Normal Subgroup with Orbit of Dimension $k>1$ is Inessential”, Mat. Zametki, 82:2 (2007), 317–320 ; Math. Notes, 82:2 (2007), 279–282 |
|
1997 |
2. |
M. N. Podoksenov, “A Lorentzian manifold with a group of conformal transformations that contains a normal one-parameter subgroup of homotheties”, Sibirsk. Mat. Zh., 38:6 (1997), 1356–1359 ; Siberian Math. J., 38:6 (1997), 1178–1181 |
1
|
|
1995 |
3. |
M. N. Podoksenov, “Gaussian and mean curvatures of two-dimensional subgroups of three-dimensional unimodular Lorentzian Lie groups”, Sibirsk. Mat. Zh., 36:2 (1995), 385–389 ; Siberian Math. J., 36:2 (1995), 338–342 |
|
1993 |
4. |
M. N. Podoksenov, “A Lorentz manifold with a group of conformal transformation containing a normal subgroup of homotheties”, Sibirsk. Mat. Zh., 34:2 (1993), 146–153 ; Siberian Math. J., 34:2 (1993), 330–336 |
1
|
|
1992 |
5. |
M. N. Podoksenov, “Conformally homogeneous Lorentz manifolds. II”, Sibirsk. Mat. Zh., 33:6 (1992), 154–161 ; Siberian Math. J., 33:6 (1992), 1087–1093 |
5
|
6. |
M. N. Podoksenov, “Equivalent definition of the strong causality of space-time”, Sibirsk. Mat. Zh., 33:2 (1992), 200–201 ; Siberian Math. J., 33:2 (1992), 354–355 |
1
|
|
1990 |
7. |
M. N. Podoksenov, “К статье “Об одном классе преобразований групп Ли””, Sibirsk. Mat. Zh., 31:5 (1990), 209–210 |
|
1989 |
8. |
M. N. Podoksenov, “A Lorentzian manifold with a one-parameter group of homotheties which has a closed isotropic orbit”, Sibirsk. Mat. Zh., 30:5 (1989), 135–137 ; Siberian Math. J., 30:5 (1989), 771–773 |
3
|
9. |
M. N. Podoksenov, “A class of transformations of Lie groups”, Sibirsk. Mat. Zh., 30:3 (1989), 97–102 ; Siberian Math. J., 30:3 (1989), 423–428 |
|
Organisations |
|
|
|
|