Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Kovtunenko, Viktor Anatol'evich

Statistics Math-Net.Ru
Total publications: 15
Scientific articles: 15
Presentations: 1

Number of views:
This page:409
Abstract pages:1896
Full texts:791
References:163

https://www.mathnet.ru/eng/person28417
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/341633
https://orcid.org/0000-0001-5664-2625

Publications in Math-Net.Ru Citations
2023
1. N. P. Lazarev, V. A. Kovtunenko, “Problem of the equilibrium of a two-dimensional elastic body with two contacting thin rigid inclusions”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 227 (2023),  51–60  mathnet
2. N. P. Lazarev, V. A. Kovtunenko, “Asymptotic analysis of the problem of equilibrium of an inhomogeneous body with hinged rigid inclusions of various widths”, Prikl. Mekh. Tekh. Fiz., 64:5 (2023),  205–215  mathnet  elib; J. Appl. Mech. Tech. Phys., 64:5 (2024), 911–920 3
2021
3. Victor A. Kovtunenko, Erich Bauer, Ján Eliaš, Pavel Krejčí, Giselle A. Monteiro, Lenka Straková (Siváková), “Cyclic behavior of simple models in hypoplasticity and plasticity with nonlinear kinematic hardening”, J. Sib. Fed. Univ. Math. Phys., 14:6 (2021),  756–767  mathnet  isi 2
2016
4. V. A. Kovtunenko, G. Leugering, “A shape-topological control of variational inequalities”, Eurasian Math. J., 7:3 (2016),  41–52  mathnet  isi 3
2006
5. V. A. Kovtunenko, I. V. Sukhorukov, “Optimization formulation of the evolutionary problem of crack propagation under quasibrittle fracture”, Prikl. Mekh. Tekh. Fiz., 47:5 (2006),  107–118  mathnet  elib; J. Appl. Mech. Tech. Phys., 47:5 (2006), 704–713 7
2002
6. V. A. Kovtunenko, “Regular perturbation methods for a region with a crack”, Prikl. Mekh. Tekh. Fiz., 43:5 (2002),  135–152  mathnet  elib; J. Appl. Mech. Tech. Phys., 43:5 (2002), 748–762 6
1999
7. V. A. Kovtunenko, “Solution of the problem of optimal cut in an elastic beam”, Prikl. Mekh. Tekh. Fiz., 40:5 (1999),  149–157  mathnet  elib; J. Appl. Mech. Tech. Phys., 40:5 (1999), 908–916
1998
8. V. A. Kovtunenko, A. N. Leont'ev, A. M. Khludnev, “Equilibrium problem of a plate with an oblique cut”, Prikl. Mekh. Tekh. Fiz., 39:2 (1998),  164–174  mathnet  elib; J. Appl. Mech. Tech. Phys., 39:2 (1998), 302–311 4
9. V. A. Kovtunenko, “A variational and a boundary value problem with friction on the interior boundary”, Sibirsk. Mat. Zh., 39:5 (1998),  1060–1073  mathnet  mathscinet  zmath; Siberian Math. J., 39:5 (1998), 913–926  isi 11
1996
10. V. A. Kovtunenko, “Solution of the problem of a beam with a cut”, Prikl. Mekh. Tekh. Fiz., 37:4 (1996),  160–166  mathnet  elib; J. Appl. Mech. Tech. Phys., 37:4 (1996), 595–600 2
11. V. A. Kovtunenko, “An iterative penalty method for a problem with constraints on the inner boundary”, Sibirsk. Mat. Zh., 37:3 (1996),  587–591  mathnet  mathscinet  zmath; Siberian Math. J., 37:3 (1996), 508–512  isi 4
1994
12. V. A. Kovtunenko, “Convergence of solutions of variational inequalities in the problem of the contact of a plate with a nonsmooth stamp”, Differ. Uravn., 30:3 (1994),  488–492  mathnet  mathscinet; Differ. Equ., 30:3 (1994), 452–456
13. V. A. Kovtunenko, “Numerical method of solving the problem of the contact of an elastic plate with an obstacle”, Prikl. Mekh. Tekh. Fiz., 35:5 (1994),  142–146  mathnet; J. Appl. Mech. Tech. Phys., 35:5 (1994), 776–780
14. V. A. Kovtunenko, “An iterative penalty method for variational inequalities with strongly monotone operators”, Sibirsk. Mat. Zh., 35:4 (1994),  826–829  mathnet  mathscinet  zmath; Siberian Math. J., 35:4 (1994), 735–738  isi
1993
15. V. A. Kovtunenko, “An iterative method for solving variational inequalities of the contact elastoplastic problem by the penalty method”, Zh. Vychisl. Mat. Mat. Fiz., 33:9 (1993),  1409–1415  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 33:9 (1993), 1245–1249  isi 1

Presentations in Math-Net.Ru
1. Well-posedness of the governing equations for quasi-linear viscoelastic model with pressure-dependent moduli in which both stress and strain appear linearly
V. A. Kovtunenko
Seminar on Analysis, Differential Equations and Mathematical Physics
June 13, 2024 18:00

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024