Full list of publications: |
|
|
Citations (Crossref Cited-By Service + Math-Net.Ru) |
|
Articles
|
|
|
1. |
Vladimir A. Vatutin, Elena E. Dyakonova, “Branching processes under nonstandard conditions”, Stoch. Qual. Control, 39:1 (2024), 1 (Published online) |
2. |
V. A. Vatutin, C. Dong, E. E. Dyakonova, “Some functionals for random walks and critical branching processes in an extremely unfavorable random environment”, Mat. Sb., 215:10 (2024) |
3. |
V. A. Vatutin, E. E. Dyakonova, Diskr. Mat. |
4. |
V. A. Vatutin, E. E. Dyakonova, “Letter to the Edinor”, Teor. Veroyatnost. i Primenen. |
5. |
V. A. Vatutin, E. E. Dyakonova, “Population size of a critical branching process evolving in unfovarable environment”, Theory Probab. Appl., 68:3 (2023), 411–430 |
6. |
V. A. Vatutin, C. Dong, E. E. Dyakonova, “Random walks conditioned to stay nonnegative and branching processes in an unfavourable environment”, Sb. Math., 214:11 (2023), 1501–1533 |
7. |
E. E. Dyakonova, “Intermediately Subcritical Branching Process in a Random Environment: The Initial Stage of the Evolution”, Proc. Steklov Inst. Math., 316 (2022), 121–136 |
8. |
V. A. Vatutin, E. E. D'yakonova, “Atypical population size in a two-type decomposable branching process”, Theory Probab. Appl., 67:4 (2022), 516–534 |
9. |
V. A. Vatutin, E. E. Dyakonova, “Critical branching processes evolving in a unfavorable random environment”, Discrete Math. Appl., 34:3 (2024), 175–186 |
10. |
V. A. Vatutin, E. E. Dyakonova, V. A. Topchii, “Critical Galton-Watson branching processes with a countable set of types and infinite second moments”, Sb. Math., 212:1 (2021), 1–24 |
11. |
V. A. Vatutin, E. E. Dyakonova, “Multitype branching processes in random environment”, Russian Math. Surveys, 76:6 (2021), 1019–1063 |
12. |
V. A. Vatutin, E. E. D'yakonova, “The Survival Probability for a Class of Multitype Subcritical Branching Processes in Random Environment”, Math. Notes, 107:2 (2020), 189–200 |
13. |
V. A. Vatutin, E. E. Dyakonova, “Branching processes in random environment with sibling dependence”, J. Math. Sci. (N.Y.), 246:4 (2020), 569–579 , arXiv: 1812.10304
|
1
[x]
|
14. |
Elena Dyakonova, Doudou Li, Vladimir Vatutin, Mei Zhang, “Branching processes in random environment with immigration stopped at zero”, J. Appl. Probab., 57:1 (2020), 237–249 , arXiv: 1905.03535
|
12
[x]
|
15. |
V. A. Vatutin, E. E. D'yakonova, “Subcritical Branching Processes in Random Environment with Immigration: Survival of a Single Family”, Theory Probab. Appl., 65:4 (2021), 527–544 |
16. |
V. A. Vatutin, E. E. D'yakonova, “Properties of multitype subcritical branching processes in random environment”, Discrete Math. Appl., 31:5 (2021), 367–382 |
17. |
V. A. Vatutin, E. E. D'yakonova, “Multitype weakly subcritical branching processes in random environment”, Discrete Math. Appl., 31:3 (2021), 207–222 |
18. |
V. A. Vatutin, E. E. D'yakonova, “The initial evolution stage of a weakly subcrtical branching process in a random environment”, Theory Probab. Appl., 64:4 (2019), 535–552 |
19. |
V. A. Vatutin, E. E. D'yakonova, “Decomposable branching processes with two types of particles”, Discrete Math. Appl., 28:2 (2018), 119–130 |
20. |
E. E. D'yakonova, “A subcritical decomposable branching process in a mixed environment”, Discrete Math. Appl., 28:5 (2018), 275–283 |
21. |
Vladimir Vatutin, Elena Dyakonova, “Path to survival for the critical branching processes in a random environment”, J. Appl. Probab., 54:2 (2017), 588–602 , arXiv: 1603.03199
|
9
[x]
|
22. |
V. A. Vatutin, E. E. D'yakonova, “Multitype branching processes in random environment: survival probability for the critical case”, Theory Probab. Appl., 62:4 (2018), 506–521 |
23. |
E. E. D'yakonova, Review of Applied and Industrial Mathematics, 24:5 (2017), 587 |
24. |
V. A. Vatutin, E. E. D'yakonova, “How many families survive for a long time?”, Theory Probab. Appl., 61:4 (2017), 692–711 |
25. |
Elena E. D'yakonova, “Reduced multitype critical branching processes in random environment”, Discrete Math. Appl., 28:1 (2018), 7–22 |
26. |
E. E. D'yakonova, “Limit theorem for multitype critical branching process evolving in random environment”, Discrete Math. Appl., 25:3 (2015), 137–147 |
27. |
V. A. Vatutin, E. E. D'yakonova, “Decomposable Branching Processes with a Fixed Extinction Moment”, Proc. Steklov Inst. Math., 290 (2015), 103–124 |
28. |
Vladimir A. Vatutin, Elena E. Dyakonova, “Extinction of decomposable branching processes”, Discrete Math. Appl., 26:3 (2016), 183–192 |
29. |
E. E. Dyakonova, “Branching processes in a Markov random environment”, Discrete Math. Appl., 24:6 (2014), 327–343 |
30. |
E. E. D'yakonova, Review of Applied and Industrial Mathematics, 21:5 (2014), 577 |
31. |
E. E. D'yakonova, Review of Applied and Industrial Mathematics, 21:2 (2014), 325 |
32. |
V. A. Vatutin, E. E. D'yakonova, S. Sagitov, “Evolution of branching processes in a random environment”, Proc. Steklov Inst. Math., 282 (2013), 220–242 |
33. |
E. E. D'yakonova, “Multitype Subcritical Branching Processes in a Random Environment”, Proc. Steklov Inst. Math., 282 (2013), 80–89 |
34. |
V. Vatutin, E. E. Dyakonova, P. Jagers, S. Sagitov, “Decomposable branching processes in a Markovian random environment”, Abstracts of communications of the Russian-Chinese Seminar on the asymptotic methods in probability theory and mathematical statistics (St. Petersburg, 10–14 June, 2013), St. Petersburg State University, St. Petersburg, 2013, 36 |
35. |
E. E. D'yakonova, Review of Applied and Industrial Mathematics, 20:3 (2013), 389 |
36. |
E. E. D'yakonova, “Multitype branching processes evolving in a Markovian environment”, Discrete Math. Appl., 22:5-6 (2012), 639–664 |
37. |
V. Vatutin, E. Dyakonova, P. Jagers, S. Sagitov, “A decomposable branching process in a Markovian environment”, J. Appl. Math. Stoch. Anal., 2012 (2012), 694285–24
|
7
[x]
|
38. |
E. E. D'yakonova, Review of Applied and Industrial Mathematics, 19:5 (2012), 693 |
39. |
E. E. D'yakonova, “Multitype Galton–Watson branching processes in Markovian random environment”, Theory Probab. Appl., 56:3 (2011), 508–517 |
40. |
V. A. Vatutin, E. E. Dyakonova, “Asymptotic properties of multitype critical branching processes evolving in a random environment”, Discrete Math. Appl., 20:2 (2010), 157–177 |
41. |
C. Böinghoff, E. E. Dyakonova, G. Kersting, V. A. Vatutin, “Branching processes in random environment which extinct at a given moment”, Markov Process. Related Fields, 16:2 (2010), 329–350 |
42. |
E. Dyakonova, “On subcritical multi-type branching process in random environment”, Fifth Colloquium on Mathematics and Computer Science, Discrete Math. Theor. Comput. Sci. Proc., AG, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2008, 397–404 |
43. |
V. A. Vatutin, E. E. D'yakonova, “Waves in Reduced Branching Processes in a Random Environment”, Theory Probab. Appl., 53:4 (2009), 679–695 |
44. |
E. E. D'yakonova, “Critical multitype branching processes in a random environment”, Discrete Math. Appl., 17:6 (2007), 587–606 |
45. |
V. A. Vatutin, E. E. D'yakonova, “Limit theorems for reduced branching processes in a random environment”, Theory Probab. Appl., 52:2 (2008), 277–302 |
46. |
V. A. Vatutin, E. E. D'yakonova, “Branching processes in random environment and “bottlenecks” in evolution of populations”, Theory Probab. Appl., 51:1 (2007), 189–210 |
47. |
E. Dyakonova, “Survival probability of a critical multi-type branching process in random environment”, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, Discrete Math. Theor. Comput. Sci. Proc., AG, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2006, 375–379 |
48. |
V. Vatutin, E. Dyakonova, “Yaglom type limit theorem for branching processes in random environment”, Mathematics and computer science. III, Trends Math., Birkhäuser, Basel, 2004, 375–385 |
49. |
E. E. Dyakonova, J. Geiger, V. A. Vatutin, “On the survival probability and a functional limit theorem for branching processes in random environment”, Markov Process. Related Fields, 10:2 (2004), 289–306 |
50. |
V. A. Vatutin, E. E. D'yakonova, “Galton–Watson branching processes in a random environment. II: Finite-dimensional distributions”, Theory Probab. Appl., 49:2 (2005), 275–309 |
51. |
V. A. Vatutin, E. E. D'yakonova, “Galton–Watson branching processes in a random environment. I: limit theorems”, Theory Probab. Appl., 48:2 (2004), 314–336 |
52. |
V. A. Vatutin, E. E. Dyakonova, “Multitype branching processes and some queueing systems”, Proceedings of the Seminar on Stability Problems for Stochastic Models, Part II (Eger, 2001), J. Math. Sci. (New York), 111, no. 6, 2002, 3901–3911
|
10
[x]
|
53. |
E. E. Dyakonova, “On multitype branching processes in a random environment”, Proceedings of the Seminar on Stability Problems for Stochastic Models, Part I (Eger, 2001), J. Math. Sci. (New York), 111, no. 3, 2002, 3537–3540
|
6
[x]
|
54. |
V. Vatutin, E. Dyakonova, “Reduced branching processes in random environment”, Mathematics and computer science, II (Versailles, 2002), Trends Math., Birkhäuser, Basel, 2002, 455–467 |
55. |
V. A. Vatutin, E. E. Dyakonova, “The survival probability of a critical multitype Galton-Watson branching process”, Proceedings of the Seminar on Stability Problems for Stochastic Models, Part II (Nalęczow, 1999), J. Math. Sci. (New York), 106, no. 1, 2001, 2752–2759
|
4
[x]
|
56. |
E. E. Dyakonova, “On a multitype Galton–Watson process with state-dependent immigration”, Proceedings of the 19th Seminar on Stability Problems for Stochastic Models, Part I (Vologda, 1998), J. Math. Sci. (New York), 99, no. 3, 2000, 1244–1249
|
2
[x]
|
57. |
E. E. Dyakonova, “Diffusion approximation of branching migration processes”, Proceedings of the 18th Seminar on Stability Problems for Stochastic Models, Part III (Hajdúszoboszló, 1997), J. Math. Sci. (New York), 93, no. 4, 1999, 511–514
|
1
[x]
|
58. |
E. E. D'yakonova, “The asymptotics of the probability of nonextinction of a multidimensional branching process in a random environment”, Discrete Math. Appl., 9:2 (1999), 119–136 |
59. |
E. E. Dyakonova, “Transition phenomena for a Galton–Watson process with immigration in a Markovian environment”, Proceedings of the XVII Seminar on Stability Problems for Stochastic Models, Part II (Kazan', 1995), J. Math. Sci., 83, no. 3, 1997, 397–400 |
60. |
V. A. Vatutin, E. E. D'yakonova, “Critical branching processes in random environment: the probability of extinction at a given moment”, Discrete Math. Appl., 7:5 (1997), 469–496 |
61. |
E. E. D'yakonova, “A branching process with migration in a random environment”, Discrete Math. Appl., 7:1 (1997), 33–45 |
62. |
E. E. D'yakonova, “Branching processes that are close to critical with migration”, Theory Probab. Appl., 41:1 (1997), 151–156 |
63. |
E. E. Dyakonova, “Transition phenomena for branching processes in a random environment”, Proceedings of the XVI Seminar on Stability Problems for Stochastic Models, Part II (Eger, 1994), J. Math. Sci., 78, no. 1, 1996, 48–53
|
1
[x]
|
64. |
E. E. Dyakonova, “On transient phenomena for branching migration processes”, Probabilistic methods in discrete mathematics (Petrozavodsk, 1992), Progr. Pure Appl. Discrete Math., 1, VSP, Utrecht, 1993, 148–154 |
65. |
E. E. D'yakonova, “On the Galton–Watson process with immigration”, J. Math. Sci., 72:1 (1994), 2880–2882 |
66. |
E. E. D'yakonova, V. G. Mikhailov, “Sufficient conditions for asymptotic normality of decomposable statistics in an inhomogeneous allocation scheme”, Discrete Math. Appl., 2:3 (1992), 325–335 |
67. |
E. E. D'yakonova, K. P. Belyaev, “Limit theorems for priority queueing systems with batch processing in heavy traffic. I”, Moscow Univ. Comput. Math. Cybernet., 1989, no. 4, 59–63 |
68. |
E. E. D'yakonova, K. P. Belyaev, “Estimates of the speed of convergence in the limit theorems for batch-processing systems with heavy traffic”, Moscow Univ. Comput. Math. Cybernet., 1988, no. 1, 65–70 |
69. |
E. E. Dyakonova, “A system with multiple servicing in the case of a small load”, Vestn. Mosk. un-ta. Ser. I Matem. Mekh., 1987, no. 3, 41–43 |
70. |
E. E. D'yakonova, A. D. Solov'yev, “A single-line system with group serving under heavy load conditions”, Soviet J. Comput. Systems Sci., 25:4 (1987), 74–79 |
71. |
E. E. Dyakonova, “Nekotorye distsipliny obsluzhivaniya bolshogo paketa zayavok”, Vestn. Mosk. un-ta. Ser. I Matem. Mekh., 1985, no. 1, 36–42 |
Proceedings
|
|
|
72. |
E. E. Dyakonova, “Predelnaya teorema dlya razlozhimogo vetvyaschegosya protsessa v sluchainoi srede”, XVI Vserossiiskii Simpozium po prikladnoi i promyshlennoi matematike (Sochi–Dagomys, 27 sentyabrya – 4 oktyabrya 2015 g.), Obozrenie prikladnoi i promyshlennoi matematiki, 22, no. 5, TVP, M., 2015 http://tvp.ru/conferen/vsppm16/chelso146.pdf |
73. |
E. E. Dyakonova, “Branching processes in random environment”, XXXI International Seminar on Stability Problems for Stochastic Models, Book of Abstracts (Moscow, 23–27 April 2013), Institute of Informatics Problems, Russian Academy of Science, Moscow, 2013, 20–21 |
74. |
E. E. Dyakonova, “O mnogotipnom dokriticheskom protsesse Galtona–Vatsona v sluchainoi srede” (Novgorod, 01–08 oktyabrya, 2013 g.), Obozrenie prikladnoi i promyshlennoi matematiki, 20 (2013), 389 |
75. |
E. E. Dyakonova, “Multitype branching processes in Markovian random environment”, Mezhdunarodnaya konferentsiya «Teoriya veroyatnostei i ee prilozheniya», posvyaschennaya 100-letiyu so dnya rozhdeniya B. V. Gnedenko (Moskva, 26–30 iyunya 2012 g.), Tezisy dokladov, eds. A. N. Shiryaev, A. V. Lebedev, LENAND, Moskva, 2012, 93–94 |
76. |
E. E. Dyakonova, “O maksimume vetvyaschegosya protsessa v markovskoi sluchainoi srede” (Sochi, 01–08 oktyabrya 2012 g.), Obozr. prikl. i prom. matem., 19 (2012), 763 |
77. |
E. E. Dyakonova, “Uslovnaya predelnaya teorema dlya mnogotipnogo dokriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Obozr. prikl. i prom. matem., 18:4 (2011) |
78. |
E. E. Dyakonova, “Predelnaya teorema dlya mnogomernogo dokriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Obozr. prikl. i prom. matem., 16:1 (2009), 194–195 |
ArXiv
|
|
|
79. |
V. Vatutin, E. Dyakonova, On the prospective minimum of the random walk conditioned to stay non-negative, 2024 (Published online) , 34 pp., arXiv: 2409.02215 |
80. |
C. Dong, E. Dyakonova, V. Vatutin, Random walks conditioned to stay non-negative and branching processes in non-favorable random environment, 2023 , 35 pp., arXiv: 2303.07776 |
81. |
C. Dong, E. Dyakonova, V. Vatutin, Some functionals for random walks and critical branching processes in extreme random environment, 2023 (Published online) , 28 pp., arXiv: 2311.10445 |
82. |
V. Vatutin, E. Dyakonova, Critical branching processes evolving in an unfavorable random environment, 2022 , 15 pp., arXiv: 2209.13611 |
83. |
E. E. Dyakonova, Intermediately subcritical branching process in random environment: the initial stage of the evolution, 2021 , 23 pp., arXiv: 2110.01836 |
84. |
Vladimir Vatutin, Elena Dyakonova, Survival probability for a class of multitype subcritical branching processes in random environment, 2019 , 16 pp., arXiv: 1903.12491 |
85. |
V. A. Vatutin, E. E. Dyakonova, Branching processes in random environment with sibling dependence, 2018 , 14 pp., arXiv: 1812.10304 |
86. |
V. A. Vatutin, E. E. Dyakonova, How many families survive for a long time?, 2016 , 23 pp., arXiv: 1608.08062 |
87. |
V. A. Vatutin, E. E. Dyakonova, Multitype branching processes evolving in i.i.d. random environment: probability of survival for the critical case, 2016 , 20 pp., arXiv: 1612.00681 |
Personalia
|
|
|
88. |
V. I. Afanasyev, V. G. Mikhailov, E. E. Dyakonova, “Andrei Mikhailovich Zubkov: On the occasion of his 75th birthday”, Proc. Steklov Inst. Math., 316 (2022), 1–2 |
89. |
V. I. Afanasyev, V. G. Mikhailov, E. E. Dyakonova, “Vladimir Alekseevich Vatutin: On the occasion of his 70th birthday”, Proc. Steklov Inst. Math., 316 (2022), 3–4 |
Miscellaneous
|
|
|
90. |
Vetvyaschiesya protsessy i smezhnye voprosy, Sbornik statei. K 75-letiyu so dnya rozhdeniya Andreya Mikhailovicha Zubkova i 70-letiyu so dnya rozhdeniya Vladimira Alekseevicha Vatutina, Trudy MIAN, 316, ed. V. I. Afanasev, V. G. Mikhailov, E. E. Dyakonova, MIAN, M., 2022 , 390 pp. ; (Published online); ; |
|