Partial differential equations, Applications of mathematics to Biology and other natural sciences, Ordinary differential equations
Main publications:
Kanel, Jacob Isaac; Kirane, Mokhtar, “Global solutions of reaction-diffusion systems with a balance law and nonlinearities of exponential growth”, J. Differential Equations, 165:1 (2000), 24–41
Kanel, J. I.; Zhou, Li, “Existence of wave front solutions and estimates of wave speed for a competition-diffusion system”, Nonlinear Anal., 27:5 (1996), 579–587
Ya. I. Kanel', “The existence of a solution of traveling wave type for the Belousov–Zhabotinskii system of equations. II”, Siberian Math. J., 32:3 (1991), 390–400
Kanel Ya. I., “Ob odnoi modelnoi sisteme uravnenii odnomernogo dvizheniya gaza”, Diff. uravneniya, 4:4 (1968), 721–734 , A model system of equations for the one-dimensional motion
I. Ya. Kanel', “Stabilization of the solutions of the equations of combustion theory with finite initial functions”, Mat. Sb. (N.S.), 65(107):3 (1964), 398–413
I. Ya. Kanel', “Stabilization of solutions of the Cauchy problem for equations encountered in combustion theory”, Mat. Sb. (N.S.), 59(101) (supplementary) (1962), 245–288
Kanel, J. I.; Zhou, Li, “Existence of wave front solutions and estimates of wave speed for a competition-diffusion system”, Nonlinear Anal., 27:5 (1996), 579–587
Kanel, Jacob Isaac; Kirane, Mokhtar, “Global solutions of reaction-diffusion systems with a balance law and nonlinearities of exponential growth”, J. Differential Equations, 165:1 (2000), 24–41
I. Ya. Kanel', “Stabilization of solutions of the Cauchy problem for equations encountered in combustion theory”, Mat. Sb. (N.S.), 59(101) (supplementary) (1962), 245–288
8.
G. G. Chase, J. Arconti, J. Kanel, “The Effect of Filter Cakes on Filter Medium Resistance”, Separation Science and Technology, 29:16 (1994), 2179–2196
Kanel, J. I., “On global initial-boundary-value problems for reaction-diffusion systems with balance conditions.”, Nonlinear Anal., 37:8, Ser. A: Theory Methods, (1999), 971–995
J. I. Kanel, “The global solvability of second initial boundary value problem for reaction-diffusion systems”, Nonlinear Anal. Theory Methods Appl., 37 (1999), 971–996
I. Ya. Kanel', “On some systems of quasilinear parabolic equations of the divergence type”, U.S.S.R. Comput. Math. Math. Phys., 6:3 (1966), 74–88
14.
Kanel Ya. I., “Ob odnoi modelnoi sisteme uravnenii odnomernogo dvizheniya gaza”, Diff. uravneniya, 4:4 (1968), 721–734 , A model system of equations for the one-dimensional motion
Kanel, Jacob Isaac; Kirane, Mokhtar, “Pointwise a priori bounds for a strongly coupled system of reaction-diffusion equations with a balance law”, Math. Methods Appl. Sci., 21:13 (1998), 1227–1232
I. Ya. Kanel', “Stabilization of the solutions of the equations of combustion theory with finite initial functions”, Mat. Sb. (N.S.), 65(107):3 (1964), 398–413
17.
Ya. I. Kanel', “The existence of a solution of traveling wave type for the Belousov–Zhabotinskii system of equations. II”, Siberian Math. J., 32:3 (1991), 390–400
18.
G. G. Chase, J. Kanel, “Jump Discontinuity Equations in Cake Filtration”, Separation Science and Technology, 31:5 (1996), 665–678
Kanel, J.I, Novick-Cohen, A., Vilenkin, A, “Numerical analysis of a 3D radially symmetric shrinking grain attached to a free crystal surface”, Materials Science and Technology, 3 (2005), 27–37
Kanel, Jacob; Novick-Cohen, Amy; Vilenkin, Arkady, “Coupled surface, groove, and grain boundary motion”, Conference: International Conference on Diffusion, Segregation and Stresses in Materials (DSS-2002) Location: TECH UNIV, MOSCOW STATE INST STEEL & ALLOYS, MOSCOW, RUSSIA, DIFFUSION, SEGREGATION AND STRESSES IN MATERIALS Book Series: DEFECT AND DIFFUSION FORUM, ISSN: 1012-0386, Scitec Publications Ltd., 216–217, eds. Bokstein, BS; Straumal, BB, TRANS TECH PUBLICATIONS LTD, BRANDRAIN 6, CH-8707 ZURICH-UETIKON, SWITZERLAND, 2002, 299–306
23.
Kanel, Jacob Isaac; Kirane, Mokhtar, “Global existence and large time behavior of positive solutions to a reaction diffusion system”, Differential Integral Equations, 13:1–3 (2000), 255–264
24.
Kanel, Jacob Isaac; Kirane, Mokhtar, “Existence of travelling waves for a diffusive epidemic model”, Commun. Appl. Anal., 4:3 (2000), 385–387
25.
Kanel, J. I.; Kirane, M.; Tatar, N.-E., “Pointwise a priori bounds for a strongly coupled system of reaction-diffusion equations”, Int. J. Differ. Equ. Appl., 1:1 (2000), 77–97
26.
Zhou, Li; Kanel, Ya. I., “A new proof of existence of the wave front solutions for a kind of reaction-diffusion system.”, Nonlinear evolutionary partial differential equations (Beijing, 1993), 1997, 469–481 , AMS/IP Stud. Adv. Math., 3, Amer. Math. Soc., Providence, RI
27.
Ya. I. Kanel', “Global solvability of the Cauchy problem for some systems of reaction-diffusion equations”, Differ. Equ., 28:6 (1992), 845–849
28.
Ya. I. Kanel', “The existence of a solution of traveling wave type for the Belousov–Zhabotinskiǐ system of equations”, Differ. Equ., 26:4 (1990), 478–485
29.
Ya. I. Kanel', “Solvability in the large of a system of reaction-diffusion equations with the balance condition”, Differ. Equ., 26:3 (1990), 331–339
30.
Ya. I. Kanel', Differ. Uravn., 26:4 (1990), 652–660
31.
Ya. I. Kanel, “Zadacha Kashi dlya sistemy polulineinykh parabolicheskikh uravnenii s balansnymi usloviyami”, Diff. uravneniya, 20:10 (1984), 1753–1760 , translation: Cauchy's problem for semilinear parabolic equations with balance conditions. [J] Differ. Equations 20, 1260–1266 (1984)
32.
Kanel Ya. I., O zadache Koshi dlya sistemy uravnenii teorii goreniya, No 793-80, dep. 3 marta 1980 g., bibligr. ukaz. VINITI “Deponir. Ruk.” 1980, No 6, b/o 151, cherez SMZh., 1980
33.
Kanel Ya. I., “Asimptotika po vremeni dlya reshenii silno parabolicheskoi sistemy s razryvnymi koeffitsientami”, Diff. uravneniya, 12:2 (1976), 325–330, 380–381 , Engl.transl: .Asymptotic properties, with respect to the time, of solutions of a strongly parabolic system. (English) Differ. Equations 12(1976), 225–229 (1977).
34.
Ya. I. Kanel, “Stabilizatsiya reshenii dlya odnoi kvazilineinoi parabolicheskoi sistemy uravnenii divergentnogo vida”, Diff. uravneniya, 10 (1974), 1078–1090, 1149–1150 , Stabilization of the solutions for a certain quasilinear parabolic system of equations in divergence form.
35.
Ya. I. Kanel, “Ob odnoi sisteme kvazilineinykh parabolicheskikh uravnenii, raspadayuschikhsya v glavnykh chastyakh”, Diff. uravneniya, 8 (1972), 2029–2037, 2112 , A certain system of quasilinear parabolic equations with splitting principal parts.
36.
Ya. I. Kanel, “O nekotorykh modelnykh sistemakh uravnenii gazovoi dinamiki.”, Diff. uravneniya, 5 (1969), 922–934 , Some model equation systems of gas dynamics.
37.
I. Ya. Kanel', “Stabilization of solutions of the Cauchy problem for certain linear parabolic equations”, Uspekhi Mat. Nauk, 18:2(110) (1963), 127–134
38.
Kanel Ya. I., “O statsionarnom reshenii dlya sistemy uravnenii teorii goreniya”, Doklady AN SSSR, 149:2 (1963), 367–375
39.
Kanel Ya. I., “O nekotorykh zadachakh dlya uravnenii teorii goreniya”, Doklady AN SSSR, 136:2 (1961), 277–280 , translated as Soviet Math. Dokl. 2 1961 48–51, Certain problems on equations in the theory of burning.
40.
Kanel Ya. I., O povedenii resheniya uravnenii teorii goreniya pri bolshikh znacheniyakh vremeni, diss. na soisk. uch. step. kand.fiz. mat. nauk, Novosibirsk, 1961 , Akad. nauk SSSR. Sib. otd-nie. Ob'edin. uchen. sovet po fiz.-mat. i tekhn. naukam
41.
Kanel Ya. I., “O povedenii reshenii zadachi Koshi pri neogranichennom vozrastanii vremeni dlya kvazilineinykh uravnenii, vstrechayuschikhsya v teorii goreniya”, Doklady AN SSSR, 132:2 (1960), 268––271 , On the behavior of solutions of the Cauchy problem when the time tends to infinity, in the case of quasi-linear equations arising in the theory of combustion. translated as Soviet Math. Dokl. 1 1960 533–536